Hybrid Transported-Tabulated Strategy to Downsize Detailed Chemistry for Numerical Simulation of Premixed Flames
Résumé
A strategy to introduce hydrocarbon combustion detailed chemistry into three-dimensional numerical simulation of flames is reported. Significant progress has been made recently in terms of accuracy and robustness in both chemical kinetics and flow computations. However, the highest resolution reached in simulation of practical burner does not yet ensure that the response of intermediate radical species is fully captured. In the method discussed, the full set of species and elementary reaction rates of the detailed mechanism are retained, but only species featuring non-zero concentration in fresh and burnt gases are transported with the flow. Intermediate chemical species, developing within thin flame layers, are expressed resorting to their self-similar properties observed in a series of canonical combustion problems, projected into an optimized progress variable defined from all transported species. The method is tested with success in various adiabatic and non-adiabatic laminar steady- and unsteady-strained premixed flames.