Picosecond LIBS diagnostics for Tokamak in situ plasma facing materials chemical analysis
Résumé
First results are presented in relation with experimental and theoretical studies performed at the CORIA laboratory in the general framework of the determination of the chemical analysis of Tokamak plasma facing materials by laser-induced breakdown spectroscopy (LIBS) in picosecond regime. Experiments are performed on W in a specific chamber. This chamber is equipped with a UV-visible-near IR spectroscopic device. Boltzmann plots are derived for typical laser characteristics. We show that the initial excitation temperature is close to 12 000 K followed by a quasi steady value close to 8500 K. The ECHREM (Euler code for CHemically REactive Multicomponent laser-induced plasmas) code is developed to reproduce the laser-induced plasmas. This code is based on the implementation of a Collisional-Radiative model in which the different excited states are considered as full species. This state-to-state approach is relevant to theoretically assess the departure from excitation and chemical equilibrium. Tested on aluminum, the model shows that the plasma remains close to excitation equilibrium.