Characterization of aerosols emissions from the combustion of dead shrub twigs and leaves using a cone calorimeter - Archive ouverte HAL
Article Dans Une Revue Fire Safety Journal Année : 2017

Characterization of aerosols emissions from the combustion of dead shrub twigs and leaves using a cone calorimeter

Résumé

This work is a contribution to the understanding of wildfire smoke emissions. It focuses on the characterization of aerosols emitted by the combustion of dead shrub leaves and twigs with different thickness (range of 0.75-20 mm). The experiments were carried out at bench scale with a cone calorimeter for the burning of Cistus monspeliensis leaves and twigs. Auto-igthtion of the samples was obtained by heating their surface with a radiant heat flux of 50 kW/m(2). The smoke and aerosols emitted before ignition during pre-heating were analysed separately from the smoke and aerosols emitted during the flaming phase. Heat release rate (HRR) was also measured and we observed two different behaviours depending on the diameter of the twigs. Fuel samples with diameter smaller than 4 mm exhibit a single peak HRR whereas two peaks were observed for the twigs with larger diameters. The smoke production rate (SPR) was also measured and it showed that smoke was mainly emitted during the pre-heating phase. We also obtained a strong correlation between HRR and SPR during the flaming phase but no smoke was emitted, during the glowing phase. Emission factors of aerosols were calculated depending on these combustion phases (pre-ignition and flaming) and for the range of thickness of the samples. The observations of the aerosols were performed by scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The chemical composition of organic carbon (OC) aerosols, emitted during the pre-ignition phase, were analysed using gas chromatography (GC) coupled with mass spectrometry (MS). Some carcinogenic compounds were identified. The sizes of OC and black carbon (BC) aerosols emitted were measured with an optical device. Most of the BC were PM0.3, which corresponds to the alveolar fraction of particles.
Fichier non déposé

Dates et versions

hal-01611172 , version 1 (05-10-2017)

Identifiants

Citer

Lara Leonelli, Toussaint Barboni, Paul Antoine Santoni, Yann Quilichini, Alexis Coppalle. Characterization of aerosols emissions from the combustion of dead shrub twigs and leaves using a cone calorimeter. Fire Safety Journal, 2017, 91, pp.800--810. ⟨10.1016/j.firesaf.2017.03.048⟩. ⟨hal-01611172⟩
141 Consultations
0 Téléchargements

Altmetric

Partager

More