The implication of input data aggregation on up-scaling soil organic carbon changes - Archive ouverte HAL
Article Dans Une Revue Environmental Modelling and Software Année : 2017

The implication of input data aggregation on up-scaling soil organic carbon changes

Balázs Grosz
  • Fonction : Auteur correspondant
Gang Zhao
  • Fonction : Auteur
Daniel Wallach
  • Fonction : Auteur
  • PersonId : 1204429
Claas Nendel
Luca Doro
Zhigan Zhao
  • Fonction : Auteur
Enli Wang
  • Fonction : Auteur
Fulu Tao
  • Fonction : Auteur
Thomas Gaiser
  • Fonction : Auteur
Frank Ewert
  • Fonction : Auteur
  • PersonId : 968227

Résumé

In up-scaling studies, model input data aggregation is a common method to cope with deficient data availability and limit the computational effort. We analyzed model errors due to soil data aggregation for modeled SOC trends. For a region in North West Germany, gridded soil data of spatial resolutions between 1 km and 100 km has been derived by majority selection. This data was used to simulate changes in SOC for a period of 30 years by 7 biogeochemical models. Soil data aggregation strongly affected modeled SOC trends. Prediction errors of simulated SOC changes decreased with increasing spatial resolution of model output. Output data aggregation only marginally reduced differences of model outputs between models indicating that errors caused by deficient model structure are likely to persist even if requirements on the spatial resolution of model outputs are low.

Dates et versions

hal-01604250 , version 1 (30-09-2024)

Licence

Identifiants

Citer

Balázs Grosz, Rene Dechow, Sören Gebbert, Holger Hoffmann, Gang Zhao, et al.. The implication of input data aggregation on up-scaling soil organic carbon changes. Environmental Modelling and Software, 2017, 96, pp.361-377. ⟨10.1016/j.envsoft.2017.06.046⟩. ⟨hal-01604250⟩
434 Consultations
0 Téléchargements

Altmetric

Partager

More