Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue PLoS Genetics Année : 2017

Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes

Romain Blanc-Mathieu
Laetitia Zurletto
  • Fonction : Auteur
  • PersonId : 1202792
Martine da Rocha
  • Fonction : Auteur
  • PersonId : 1204821
Marc Bailly-Bechet
Yu Jin Kim
  • Fonction : Auteur
  • PersonId : 1018834
Corinne Rancurel
Pierre Abad
Patrick Wincker
Etienne Danchin

Résumé

Root-knot nematodes (genus Meloidogyne) exhibit a diversity of reproductive modes ranging from obligatory sexual to fully asexual reproduction. Intriguingly, the most widespread and devastating species to global agriculture are those that reproduce asexually, without meiosis. To disentangle this surprising parasitic success despite the absence of sex and genetic exchanges, we have sequenced and assembled the genomes of three obligatory ameiotic and asexual Meloidogyne. We have compared them to those of relatives able to perform meiosis and sexual reproduction. We show that the genomes of ameiotic asexual Meloidogyne are large, polyploid and made of duplicated regions with a high within-species average nucleotide divergence of ~8%. Phylogenomic analysis of the genes present in these duplicated regions suggests that they originated from multiple hybridization events and are thus homoeologs. We found that up to 22% of homoeologous gene pairs were under positive selection and these genes covered a wide spectrum of predicted functional categories. To biologically assess functional divergence, we compared expression patterns of homoeologous gene pairs across developmental life stages using an RNAseq approach in the most economically important asexually-reproducing nematode. We showed that >60% of homoeologous gene pairs display diverged expression patterns. These results suggest a substantial functional impact of the genome structure. Contrasting with high within-species nuclear genome divergence, mitochondrial genome divergence between the three ameiotic asexuals was very low, signifying that these putative hybrids share a recent common maternal ancestor. Transposable elements (TE) cover a ~1.7 times higher proportion of the genomes of the ameiotic asexual Meloidogyne compared to the sexual relative and might also participate in their plasticity. The intriguing parasitic success of asexually-reproducing Meloidogyne species could be partly explained by their TE-rich composite genomes, resulting from allopolyploidization events, and promoting plasticity and functional divergence between gene copies in the absence of sex and meiosis.
Fichier principal
Vignette du fichier
2017_Blanc Mathieu_Plos Genetics_1.pdf (8.41 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01602779 , version 1 (26-05-2020)

Licence

Paternité

Identifiants

Citer

Romain Blanc-Mathieu, Laetitia Zurletto, Jean-Marc Aury, Martine da Rocha, Jerome Gouzy, et al.. Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes. PLoS Genetics, 2017, 13 (6), pp.e1006777. ⟨10.1371/journal.pgen.1006777⟩. ⟨hal-01602779⟩
206 Consultations
82 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More