A convex approach to superresolution and regularization of lines in images - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Imaging Sciences Année : 2019

A convex approach to superresolution and regularization of lines in images

Résumé

We present a new convex formulation for the problem of recovering lines in degraded images. Following the recent paradigm of super-resolution, we formulate a dedicated atomic norm penalty and we solve this optimization problem by means of a primal-dual algorithm. This parsimonious model enables the reconstruction of lines from lowpass measurements, even in presence of a large amount of noise or blur. Furthermore, a Prony method performed on rows and columns of the restored image, provides a spectral estimation of the line parameters, with subpixel accuracy.
Fichier principal
Vignette du fichier
Polisano2018Convex.pdf (1.98 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01599010 , version 1 (30-09-2017)
hal-01599010 , version 2 (27-04-2018)
hal-01599010 , version 3 (10-10-2018)
hal-01599010 , version 4 (19-11-2018)

Identifiants

Citer

Kévin Polisano, Laurent Condat, Marianne Clausel, Valérie Perrier. A convex approach to superresolution and regularization of lines in images. SIAM Journal on Imaging Sciences, 2019, 12 (1), pp.211-258. ⟨10.1137/18M118116X⟩. ⟨hal-01599010v4⟩
649 Consultations
765 Téléchargements

Altmetric

Partager

More