Weighted-LASSO for Structured Network Inference from Time Course Data - Archive ouverte HAL
Article Dans Une Revue Statistical Applications in Genetics and Molecular Biology Année : 2010

Weighted-LASSO for Structured Network Inference from Time Course Data

Résumé

We present a weighted-LASSO method to infer the parameters of a first-order vector auto-regressive model that describes time course expression data generated by directed gene-to-gene regulation networks. These networks are assumed to own prior internal structures of connectivity which drive the inference method. This prior structure can be either derived from prior biological knowledge or inferred by the method itself. We illustrate the performance of this structure-based penalization both on synthetic data and on two canonical regulatory networks (the yeast cell cycle regulation network and the E. coli S.O.S. DNA repair network).
Fichier principal
Vignette du fichier
1544-6115.1519.pdf (549.57 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01597614 , version 1 (12-05-2023)

Identifiants

Citer

Camille Charbonnier, Julien Chiquet, Christophe Ambroise. Weighted-LASSO for Structured Network Inference from Time Course Data. Statistical Applications in Genetics and Molecular Biology, 2010, 9 (1), pp.15. ⟨10.2202/1544-6115.1519⟩. ⟨hal-01597614⟩
119 Consultations
20 Téléchargements

Altmetric

Partager

More