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Abstract

We present a weighted-LASSO method to infer the parameters of a first-order vector auto-
regressive model that describes time course expression data generated by directed gene-to-gene
regulation networks. These networks are assumed to own prior internal structures of connectivity
which drive the inference method. This prior structure can be either derived from prior biological
knowledge or inferred by the method itself. We illustrate the performance of this structure-based
penalization both on synthetic data and on two canonical regulatory networks (the yeast cell cycle
regulation network and the E. coli S.O.S. DNA repair network).
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1 Introduction

¨
¨

Along the dozen of years of statistical studies related to microarrays for gene ex-
pression profiling, conditional dependency has been recognized as an appropriate
statistical tool to model direct interactions between genes. Graph representation
suits well such relationships between variables. As a consequence GGMs (Gaus-
sian Graphical Models) have been widely studied by statisticians, particularly those
looking for applications to the reconstruction of gene-to-gene regulation networks
(See e.g. Schäfer and Strimmer 2005, Meinshausen and Buhlmann 2006, Wille and
Buhlmann 2006, Castelo and Roverato 2006, Drton and Perlman 2007, Shimamura
et al. 2007). In the context of transcriptomic data, the main statistical issue para-
doxically relies on the scarcity of data: despite a shrinking cost, microarrays still
provide dataset that fall into the high-dimensional setting. Namely, the number
of variables (the p genes) remains greater than the sample size n (the number of
microarray slides).

In the Gaussian independent identically distributed (hereafter i.i.d.) setting, each
microarray experiment is considered as a realization of a Gaussian vector whose
dependency structure is fully determined by its covariance matrix. It can be shown
that non-null conditional dependencies between genes are described by nonzero en-
tries of the inverse of the covariance matrix (Dempster 1972). Thus, inferring this
matrix is equivalent to recovering the graph of interest, which is not trivial when
n is smaller than or of the order of p. To handle the data scarcity, methods based
upon `1-norm are very popular: they answer to both questions of regularization and
of variable selection by selecting the most significant edges between genes in the
network. In the i.i.d setting, `1-penalized maximum likelihood Gaussian covariance
estimation has been first investigated by Yuan and Lin (2007) and Banerjee et al.
(2008) independently. These methods provide sparse graph estimates, sparsity be-
ing a characteristic of gene-to-gene regulation networks.

Looking for an improvement of these methods regarding the biological context,
we provided in Ambroise et al. (2009) a method that not only looks for sparse
solutions, but also for an internal structure of the network that drives the inference.
Indeed, biological networks and particularly gene regulation networks are known
not only to be sparse, but also organized, so as nodes belong to different classes
of connectivity. Thus, we suggested a criterion that takes this heterogeneity into
account. This leads to a better inference when networks are highly structured. Note
that Marlin et al. (2009) published subsequently an independent paper providing a
similar method in a Bayesian framework. In these two papers, the internal structure
considered relies on affiliation networks. That is, genes are clustered into groups
that share the same connectivity patterns. This can be seen as the analogous to the
group-LASSO (Yuan and Lin 2006) applied to a graphical context.
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Finally, some authors (e.g. Opgen-Rhein and Strimmer 2007, Lèbre 2009, Shi-
mamura et al. 2009) underlined that transcriptomic dataset are not i.i.d. when con-
sidering time course expression data. Assuming a first-order vector auto-regressive
(VAR1) model for the time course data generation, they provided inference meth-
ods handling high-dimensional settings: Opgen-Rhein and Strimmer suggested a
shrinkage estimate while Lèbre performed statistical tests on limited-order partial
correlations to select significant edges. In a recent work, Shimamura et al. (2009)
proposed to deal with this VAR1 setup by combining ideas from two major devel-
opments of the LASSO to define the Recursive elastic-net. As an elastic-net (Zou
and T. 2005), this method adds an `2 penalty to the original `1 regularization, thus
encouraging the simultaneous selection of highly correlated covariates on top of the
automatic selection process due to the `1 norm. As in the adaptive-LASSO (Zou
2006), weights are corrected on the basis of a former estimate so as to adapt the
regularization parameter to the relative importance of coefficients. Note that, in this
context, we are no longer looking for an estimate of the inverse of the covariance
matrix but of the parameters of the VAR1 model, which leads to a directed graph.

In this paper, we aim to couple the time course data modeling by the VAR1
model to an `1-regularizing approach that takes the internal structure of the network
into account. This internal structure does not rely on an affiliation structure anymore
since graphs inferred from time course data display a completely asymmetrical pat-
tern. The internal structure adopted here splits the genes into two groups: a group
of hubs that exhibit a high connection probability to all other genes and a group
of leaves that only receive edges leaving from the hub class. This information can
either be inferred as seen in this paper or recovered from biological expertise since
recovering hubs consists roughly in exhibiting transcription factors in regulatory
networks, a large number of them being already identified by the biologists.

Another refinement of our method is to built on the adaptive-LASSO (Zou 2006,
Zhou et al. 2009) which is known to reduce false positive rate compared to the
classical LASSO. As such, our method belongs to the larger family of weighted-
LASSO methods. Shimamura et al. (2007) built upon Meinshausen and Buhlmann’s
neighborhood selection and the adaptive-LASSO to improve inference of networks
in an i.i.d. context. They chose separate penalties for each node’s neighborhood
selection problem and adapted each individual penalty coefficient to the information
brought by an initial ridge estimate. Here, we suggest to lower the bias of the LASSO

by not only using information from an initial statistical inference but also from prior
knowledge about the topology of the network that assumes the existence of genes
with high connection probability to other genes.

The rest of the paper is organized as follows: in the next Section, the VAR1
model and the associated likelihood function are briefly recalled; an `1-penalized
criterion is proposed where each parameter of the VAR1 model, representing the
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graph of interest, is weighted according to its belonging to the hub group. The
weights can also depend on a previous estimate just as in the adaptive-LASSO. We
also briefly recall available tools to guide the choice of the regularization parame-
ter. In Section 3, the inference procedure is detailed: we present how the internal
structure can be recovered; from that point, network inference reduces to a convex
optimization problem which we solve through an active-set algorithm based upon
the approach of Osborne et al. (2000). Finally, an experimental Section investi-
gates the performances of the method. First, simulated data are considered; then,
we try to recover edges implied in two different regulation processes. First in yeast
cell cycle, by analyzing the Spellman’s dataset and comparing the selected edges to
the direct regulations collected from the Yeastract database; second in E. coli, by
analyzing U. Alon’s precise kinetic data on S.O.S. DNA repair subnetwork.
Remark. The code will soon be embedded in the R package SIMoNe. (Chiquet
et al. 2009).

2 Modeling Heterogeneous Regulation Networks from
Time Course Data

2.1 Auto-Regressive Model and Sparse Networks
Let P = {1, 2, . . . , p} be the set of variables of interest, e.g., some p genes. Let
us denote by (Xt)t∈N the Rp-valued stochastic process that represents the discrete-
time evolution of the gene expression levels, written as a row vector. Also denote
by X i

t the expression level of gene i at time t and X\it the expression level of all
genes but i at time t. Herein, Xt is assumed to be generated by a first-order vector
auto-regressive (VAR1) model

Xt = Xt−1A + b + εt, t ∈ N∗,

where A = (Aij)i,j∈P is an p× p matrix, b is a size-p row vector and εt is a white
Gaussian process. Namely, εt ∼ N (0,D) where D is a diagonal matrix such as
Dii = σ2

i and cov(εt, εs) = 1{s=t}D for all s, t > 0. Moreover, X0 ∼ N (µ,Σ),
with µ a size-p vector of means and Σ a covariance matrix. Also assume that
cov(Xt, εs) = 0 for all s > t: hence, Xt is obviously a first-order Markov process.

Since the covariance matrix D is diagonal, each entry Aij is directly linked to
the partial correlation coefficient between variables X i

t and Xj
t−1. In fact,

Aij =
cov

(
Xj
t , X

i
t−1|X

\i
t−1

)
var
(
X i
t−1|X

\i
t−1

) ,
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thus nonzero entries of A code for the adjacency matrix of a directed graph de-
scribing the conditional dependencies between the elements of P . Inferring A is
equivalent to reconstructing this graph and is the main issue of this paper.

To this end, let us set up the estimation framework: assume that Xt is observed
on the time space t = 0, 1, . . . , n. Denote by X the (n+ 1)× p matrix of available
centered, scaled to unit-variance data, whose tth row contains the information rel-
ative to the p variables at time t. The empirical variance–covariance matrix S and
the empirical temporal covariance matrix V are then given by

S =
1

n
Xᵀ
\nX\n, V =

1

n
Xᵀ
\nX\0,

where X\k denotes matrix X deprived of its kth row.
The well-known maximum likelihood estimator (MLE) of A is easily recovered

and recalled in the following proposition.

Proposition 1. Maximizing the log-likelihood of the VAR1 process is equivalent to
the following maximization problem

max
A

{
Tr (VᵀA)− 1

2
Tr (AᵀSA)

}
,

whose solution is given by
Âmle = S−1V. (1)

Remark. Thanks to the assumptions we made on ε the VAR1 model can be seen as
a usual regression problem: denote by Xp (respectively Xf ) the n first (respectively
last) rows of X. Âols is naturally given by (Xᵀ

pXp)
−1Xᵀ

pXf = S−1V = Âmle. The
MLE (1) is straightforwardly equivalent to the ordinary least square estimate (OLS)
of A.

Solution (1) requires a covariance matrix S that is invertible, which occurs when
S is at least of rank p. In real situations the number of observations is often about
or lower than the number of variables, thus MLE needs to be regularized. Regular-
ization such as Moore-Penrose pseudo inversion or `1-regularization can be applied
on matrix S in order to make the inversion always achievable. A sharpest approach
is investigated in Opgen-Rhein and Strimmer (2007), where the OLS solution is
regularized by shrinking both matrices S and V.

We suggest to draw inspiration from the `1-penalized likelihood approach devel-
oped by Banerjee et al. (2008) in the case of i.i.d. samples of a multivariate Gaussian
distribution: here, samples are no longer i.i.d yet linked through time by the VAR1
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ˆ

model. Still, the sparsity can be controlled with a positive scalar ρ adjoined to an
`1-norm penalty on A by solving

A`1 = arg max
A

{
Tr (VᵀA)− 1

2
Tr (AᵀSA)− ρ‖A‖`1

}
. (2)

¨

Since MLE and OLS are equivalent in this framework, solution to the penalized-
likelihood formulation (2) is equivalent to solving p independent LASSO problems
on each column of A, which is exactly Meinshausen and Buhlmann’s approach.
The difference is that it does not require any post-symmetrization since there is no
symmetry constraint on A in the present context.

2.2 A Structured Modeling of the Network
To attempt a better fit of data, we suggest that A owns an internal structure that
describes classes of connectivity between the variables. Indeed, the `1-norm regu-
larization encourages a first restriction on the network’s topology inferred through
criteria (2), by encouraging sparsity. Yet, it is well known that by penalizing truly
significant entries of A as much as truly zero entries a single `1 penalization leads
to biased estimates and a particularly strong number of false positives (Knight and
Fu 2000, Zou 2006). Weighted-LASSO approaches can lower this bias by adapting
penalties to prior information about where the true zero entries should be, relying
on possibly data-driven as well as biological information. An existing correction is
given by the adaptive-LASSO (Zou 2006, Zhou et al. 2009). Penalty coefficients are
alleviated or increased using individual weights reversely proportional to an initial
estimate Ainit.

The main purpose of this paper is to show the interest of taking into account
information about the topology of the network: not only should we scale coefficients
individually, but also consider the underlying organization of P . Adaptation of
weights is made by providing A with a well-chosen prior distribution, relying on
the organization ofP . We assume that genes are spread through a partition ofP into
Q classes of connectivity. Both existences and weights of edges, described by the
elements of A, depend on the connectivity class each vertex belongs to. Denote by
Ziq the indicator function that gene i belongs to class q. Each entry Aij;ZiqZj` = 1
is provided with an independent prior distribution fijq`. Following Ambroise et al.
(2009), we choose Laplace distributions for fijq` since it is the corresponding log-
prior distribution to the `1 term in the LASSO. Hence, by choosing

fijq`(x) =
1

2λijq`
exp

{
− |x|
λijq`

}
,

where λijq` are scaling parameters, we expect a model whose log-likelihood will
naturally make a specific `1-penalization term appear.

5
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Modeling Hubs. Many configurations fit into this general model. In Ambroise
et al. (2009) we focused on an affiliation model. This structure opposes intra to
inter-cluster connections, assuming the former to be far more likely than the lat-
ter. In the present context, where dynamic regulatory networks are represented by
directed graphs, the affiliation model unnaturally assumes symmetric probabilities
for “incoming” and “outgoing” edges and should be banished. Indeed, adjacency
matrices associated to directed gene regulatory networks are asymmetrical: genes
belong to two completely different groups. While a group of hubs exhibits a high
connection probability to all other genes, the remaining set of genes only receives
edges leaving from the first class. Illustration of this phenomenon by Spellman et al.
(1998)’s dataset on Saccharomyces cerevisiae is presented in Section 4. This setup
can be summarized as follows:

fijq` =

{
fhub (·;λhub) if q is the hub class,

fleaf (·;λleaf) if q is not the hub class.

Note that this structure only differentiates edges on the basis of their origin, whether
they leave from a hub or not, whatever be their arrival points. In this type of struc-
ture built around hubs, the number of classes is fixed at 2.

Allowing for individual prior information about i and j, this model can be gen-
eralized to

fijq` =

{
fhub (·;λijλhub) if q is the hub class,

fleaf (·;λijλleaf) if q is not the hub class.

ˆ

The Likelihood. As the matrix A has been given a prior distribution, our aim is
to maximize the posterior probability of A, given the data X. For a fixed structure
Z, this is equivalent to maximizing the joint probability

A = arg max
A

logP(X,A; Z).

Now, the likelihood P(X,A; Z) is straightforwardly given by

logP(X,A; Z) = Tr (VᵀA)− 1

2
Tr (AᵀSA)− ‖PZ ?A‖`1 + c, (3)

where c is a constant term and the p× p penalty matrix is defined by

PZ = (PZ
ij )i,j∈P =

∑
q,`∈Q

ZiqZj`
λijq`

.
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Practically, we obtain the following penalty

PZ
ij = λ−1

ij ·
(
λ−1

hubZi,hub + λ−1
leafZi,leaf

)
= ρ · ρij · (ρhubZi,hub + ρleafZi,leaf) ,

where ρ > 0 is a common factor to λ−1
hub and λ−1

leaf, which can vary so as to adapt
the penalty while the ratio λ−1

hub/λ
−1
leaf = ρhub/ρleaf > 1 remains constant at a chosen

level. Coefficient ρij can be held fixed at 1 when no individual information is taken
into account or replaced by any well-chosen transformation of an initial estimate of
A in order to provide accurate information on where true zeros might be.

2.3 Tuning the Penalty Parameter
We briefly recall here the different techniques available in the literature. Asymptotic
theory of the LASSO demonstrates that a penalty parameter of order

√

¨

n guarantees
both estimation consistency and selection consistency: asymptotically, estimation is
unbiaised and all relevant covariates are included in the model with strictly positive
probability (Knight and Fu 2000). In practice, this does not tell us which penalty
to use for a fixed sample size n. To solve this problem, Tibshirani (1996) sug-
gests the use of cross-validation. However it is well-known that the best penalty for
prediction is not the best penalty for model selection purposes. Cross-validation is
therefore unrevelant here. Optimality in terms of selection naturally draws attention
towards penalties which would in some way control the false discovery rate. Clos-
est to that goal are penalty choices which guarantee a control over the probability
of connecting two nodes by a chain of edges though no such path exists in the true
graph. Such penalties have been discussed in Banerjee et al. (2008), Meinshausen
and Buhlmann (2006) or Ambroise et al. (2009) for instance. However, as under-
lined in the latter, this kind of penalty is often much too conservative to be used as
anything else than an upper bound on the set of interesting penalties. Relying on the
Bayesian interpretation of the LASSO, another option is to maximize the marginal
probability of the data over all possible tuning parameters. A specific approxima-
tion for graphs is derived in Shimamura et al. (2007). Taking into account the fact
that the number of degrees of freedom of the LASSO equals the final number of
nonzero parameters (Zou et al. 2007) computations get a lot easier. Particularly, the
BIC approximation of the marginal distribution as well as the AIC criterion, whose
good properties for model selection are well-known, are trivial to compute. In our
case, we obtain the following expressions:

BICρ = n

[
Tr
(
VᵀÂρ

)
− 1

2
Tr
(
Âᵀ
ρSÂρ

)]
− log(n)

2
dfρ,

AICρ = n

[
Tr
(
VᵀÂρ

)
− 1

2
Tr
(̂ ˆAᵀ

ρSAρ

)]
− dfρ,
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where Âρ denotes the estimate of A associated to penalty ρ and dfρ the number of
nonzero entries in Âρ.

In practice, we observe that these last criteria present both advantages of being
straightforward to compute and of providing impressively sensible results in terms
of both Recall and Precision rates. We therefore adopt these criteria to select two
best penalties to choose from in the remaining of the paper.

ˆ

3 Inference Strategy

3.1 Structure Inference
In many application fields, the structure can be considered as known, learned from
expert knowledge. In genetic for instance, biologists can often extract the list of
transcription factors from the overall set of target genes.

Otherwise, the structure, or part of it, could remain latent: we suggest a basic
strategy that performs well practically for biological networks. In this context, the
structure goes down to the identification of hubs. To this purpose we suggest a
very intuitive path. A first matrix A0 is estimated using an adequate single LASSO

penalty. We rely on AIC and BIC criteria to identify the best initial penalty. Nodes
are then classified into two groups, hubs and leaves, according to the values of the
`1-norms of the corresponding rows in A0. In order to account for the particularly
strong heterogeneity between the two groups (differences in size and dispersion),
a Gaussian mixture approach is used for clustering the genes. This defines two
submatrices A1

0 and A2
0 containing respectively the lines corresponding to the first

and second groups. Hubs are then characterized as the class with the maximum
mean absolute value of Ak

0.

3.2 Active-Set Algorithm for Network Inference
Once the internal structure has been recovered, inference of A amounts to optimiz-
ing the penalized likelihood (3) where Z are fixed parameters. This can be achieved
by solving some p independent LASSO–style problems since there is no symmetry
constraint on A: denoting by Mk the kth column of a given matrix M, we wish to
solve for each column of A the following minimization problem

Ak = arg min
β
L(β), where L(β) =

1

2
βᵀSβ − βᵀVk + ‖Λ ? β‖`1 , (4)

where Λ = (PZ)k for clarity purpose.
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¯

Solving penalized problem (4) can be achieved through various algorithms. The
elegant active-set approach suggested in Osborne et al. (2000) takes advantage of
the sparsity of β to solve the equivalent constrained problem: starting from 0p as an
initial guess, the set of active variablesA = {i : βi 6= 0} is updated at various stages
of the algorithm so as we solve linear systems with limited sizes to determine the
current nonzero coefficients denoted by βA herein. The algorithm stops once the op-
timality conditions derived from the classical Karush-Kuhn-Tucker conditions are
satisfied. In the next paragraph, we detail an adaptation to the present context of the
Osborne et al.’s approach, which was initially developed for the LASSO for linear
regression.

The objective function L in (4) is convex, yet not differentiable everywhere due
to the `1-norm: from convex analysis, β is solution to (4) iif 0p belongs to the
subdifferential of L, which mainly forms the optimality conditions of the problem.
Here, the subdifferential is given by

∂βL(β) = Sβ −Vk + Λ ? θ,

where θ ∈ sign(β), that is, θi = sign (βi) if i ∈ A, and θi ∈ [−1, 1] if i ∈ A.
Starting from β = 0p, we select the component ` of β whose subgradient abso-

lute value is maximal: as a matter of fact, a subgradient highly different from zero
induces high violation of the optimality conditions. Such a choice will guarantee a
large reduction of the objective function L during the optimization procedure. Thus,
this component is added to the active set A = A ∪ {`}.

Then, optimization is only performed on nonzero coefficients βA whose cardinal
is small since the solution is likely to be sparse. This is done by minimizing L(βA),
which reduces to a classical optimization problem because the subdifferential turns
to an usual gradient∇βL on the active set A.

While optimizing, the next update β+
A = βA+h is obtained by solving∇hL(βA+

h) = 0|A|, which leads to the following descent direction

h = −βA + S−1
A,A
(
Vk
A − ΛA ? sign(βA + h)

)
.

However sign(βA + h) cannot be known while computing h and is consequently
approximated by the current sign of βA equal to θA:

h ≈ −βA + S−1
A,A
(
Vk
A − ΛA ? θA

)
.

Due to this approximation, we check for sign-consistency between the candidate
update βA + h and θA. In case of inconsistency, the descent direction is reduced
so as βA + γh is sign consistent with θA. This ends the optimization part of the
algorithm.

9
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Then, the active set A is updated since some βi could have been set to zero dur-
ing the optimization procedure: this is done by looking for vanished βis, verifying
∂βL(βi) = 0. Finally, optimality conditions are tested: if the maximal ` of the sub-
differential corresponding to an unactivated component of β is zero, we have found
a solution; otherwise, the active set is updated by adding ` toA, since it induces the
highest reduction of L.

These three steps — optimization, deactivation and optimality testing – are re-
peated until a solution has been found, which is guaranteed (see Osborne et al.
2000). The full algorithm is detailed below. Note that it can either start from
β0 = 0p or from a solution obtain from a more penalized problem with larger
vector of penalties Λ, that speeds up the computation, hence having a behavior that
is similar to the homotopy/LARS algorithm (Efron et al. 2004).

Algorithm 1: Active-set algorithm
//INITIALIZATION
β ← β0,A ← {i : βi 6= 0} , θ ← sign(β)

while 0p /∈ ∂βL(β) do
//1. OPTIMIZATION OVER A
//1.1 Compute the (approximate) direction h

h = −βA + S−1
A,A(Vk

A − ΛA ? θA)

//1.2 Check for sign consistency
if sign(βA + h) 6= θA then

//Find a solution which is sign-feasible
γ, k ← arg min0<γ<1 {γ, k ∈ A : βk + γhk = 0}
βA ← βA + γh

else
βA ← βA + h

//2. LOOK FOR NEWLY ZEROED VARIABLES
for i : βi = 0 and minθ∈sign(βi) |∂βiL(βi)| = 0 do
A ← A\{i}

¯

//3. OPTIMALITY TESTING
// Select ` providing the highest reduction of L
`← arg maxi∈A νi, where νi = minθ∈sign(βi) |∂βi

L(βi)|
if ν` = 0 then

Stop and return β
else

Update the active set: A = A ∪ {`}

The full matrix A is directly recovered by binding column-wisely the solutions
to the p LASSO–style problems.
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Remark. With this method, the sparsity constraint only applies to each column of
A. This constraint implies that if we use n + 1 time points, S is of rank n and
thus no more than n connections can be activated by the LASSO at most in each
column (assuming the penalty is low enough to accept the activation of all possible
edges). Consequently, the sparsity constraint only applies to incoming edges and
not to outgoing ones. In that sense, sparsity assumptions implied by `1 penalization
only assume that each node is regulated by a small set of nodes and do not contradict
the existence of hubs regulating a huge set of nodes.

4 Experiments and Discussion
In this section we apply our algorithm to both synthetic and real data. Comparison
is made first within the family of the weighted-LASSO. We observe the perfor-
mances of the LASSO when associated with a single LASSO penalty or an adaptive
penalty. For the adaptive-LASSO, a single LASSO penalty is used as initial estima-
tor. We then try two different hub penalties: one relying only on the known hub
structure and another one inferring the hub structure from the initial LASSO estima-
tor. We denote these estimators by Lasso, Adaptive, KnwCl, and InfCl respectively.
Corresponding penalties can be summarized as follows:

P Lasso
ij ∝ 1

PAdaptive
ij ∝

ˆ

1

Ainit
ij

∨ 1

)
PKnwCl
ij ∝ (ρhubZi,hub + ρleafZi,leaf)

P InfCl
ij ∝

(
ρhubẐi,hub + ρleafẐi,leaf

)
,

where x∨y = max{x, y} and Ẑ denotes the inferred classification. In the remainder
of this section, we fix the ratio ρleaf/ρhub = 2, thus penalizing twice as much nodes
labeled as leaves as nodes labeled as hubs. Note also that we choose to maintain
the modification of adaptive weights adopted in Zhou et al. (2009) and prevent the
alleviation of penalty parameters. This trick ensures that the adaptive-LASSO will
select a subnetwork from the network inferred by the initial LASSO estimate. No
edge can be included if it was already excluded by the LASSO. In this way, the
adaptive-LASSO guarantees a decrease in false positives.

Apart from our family of weighted-LASSO proposals, comparison will be made
with state-of-the art network inference methods in a VAR1 setting: the Shrinkage
method suggested by Opgen-Rhein and Strimmer (2007), the Recursive Elastic Net
method (Renet-VAR) developed by Shimamura et al. (2009) and the method based
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on dynamic Bayesian networks proposed by Lèbre (2009) and available in R within
the G1DBN package.

Here, the interest of the inference lies in the recovery of the true edges, in other
words of whether the entries of A are correctly identified as nonzero. Our esti-
mators are mainly used for discriminating nonzero entries from others. Quantities
such as True Positives (TP), False Positives (FP), True Negatives (TN) and False
Negatives (FN) summarize the performances of these classifiers. Precision TP/(TP
+ FP) is the ratio of the number of true nonzero elements to the total number of
nonzero elements in the estimated matrix Â. Recall TP/(TP + FN) denotes the pro-
portion of nonzero elements in A which were correctly recovered as nonzero in the
estimation. Fallout FP/(FP+TN) gives on the contrary the proportion of zero ele-
ments in A which were falsely declared as nonzero in the estimation. In statistical
terms, the Recall (or Hit Rate) would be the empirical equivalent of the power of
our classification method considered as a test, while the Fallout (or False Alarm
Rate) would correspond to the first type α error. Note that, in the context of sparse
network inference, the number of total positives is small compared to the number
of total negatives. Thus, small variations of FP and TP will induce small variations
in Fallout and large variations in Recall. Hence, comparison between Precision and
Recall is generally more relevant than Fallout / Recall comparison in the present
sparse context. This is why we will generally choose to omit Fallout rates when we
need to alleviate the presentation of results.

These rates are easily obtained for the LASSO based methods since they auto-
matically produce null coefficients. By increasing the penalty parameter we obtain
sparser and sparser graphs. We start from a large enough penalty to constrain all
coefficients of Â to 0 and decrease the penalty until we include as many variables
as allowed by the ratio n/p. We then select the best penalty from this list as the one
maximizing either the BIC or the AIC criterion.

Like the LASSO, Renet-VAR directly implements variable selection and penalty
choice is included in the algorithm. Concerning G1DBN, we follow the author’s
advice to tune the parameters of the test procedure as described in the additional
material of Lèbre (2009). When applying the Shrinkage method developped by
Opgen-Rhein and Strimmer (2007), a supplementary step is required to transform
continuous results into a binary solution. We follow Opgen-Rhein and Strimmer’s
advice and rely on local false discovery rates. This provides each edge with an
existence probability conditional on the corresponding entry in Â. We declare as
inferred edge any edge with posterior probability exceeding the threshold of 80%
as the authors do.
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4.1 Simulated Data
Simulation Settings. To assess the performances of our approach, we apply the
previous model to a very favorable setup, where existing models already perform
quite well. We then decrease the ratio n/p in order to observe the response of
each method to this increasing lack of information. On top of that, we consider
graphs of different sizes: small graphs of 20 nodes, larger graphs of 100 nodes and
a setup with 800 nodes. For smaller graphs, we consider three different amounts
of observations: 10, 20 and 40. For medium sized graphs, we also consider the
cases n = p/2 and n = p but omit the case n = 2p as unrealistic. The setup
p = 800, n = 20 is meant to mimic Spellman et al.’s dataset.

Simulation of the VAR1 process is based upon the simulation strategy used by
Opgen-Rhein and Strimmer in order to ease the comparisons, but introduces a struc-
ture based on hubs in order to better reflect the structure we could expect from a real
data set. A graph is first simulated, with fixed numbers of nodes and edges. Like
Opgen-Rhein and Strimmer we simulate sparse graphs, with K = 2p edges. Nodes
are split into two groups according to a multinomial distribution with probabilities
(0.1,0.9), leading to 10% of hubs in average. Edges are then positioned in the graph
according to a multinomial distribution, with 85% of edges from hubs to leafs, and
the remaining set within hubs. Exception is made for the very large graph, for
which we base the number of edges and their distribution on Spellman et al.’s data.
The matrix A is synthesized on the basis of this graph: we attribute a random par-
tial correlation value uniformly distributed on [−1,−0.2] ∪ [0.2, 1] to all nonzero
coefficients (corresponding to edges in the graph).

From this matrix, a VAR1 observation is generated, using a centered Gaussian
starting value and a centered Gaussian noise, both with variance σ2 = 0.1. For
computing time reasons, this is repeated 500 times for the small graphs, 200 times
for medium sized graphs and 100 times for the large graph. Results are averaged
over all samples.

To gain a better insight into the difficulty of these synthesized data set for a
LASSO estimator, we checked whether the irrepresentability condition (Zhao and
Yu 2006, Meinshausen and Yu 2008) was validated in all these very simple simula-
tions. First, note that the graphical context requires the irrepresentability condition
to be validated for each of the p genes at the same time, which makes it much
more difficult to hold than in the simple regression context where it is an already
strong hypothesis. In our context, since we solve p independent LASSO problems,
we can check the validity of the hypothesis in each of these individual problems.
For each gene, the irrepresentability condition is tested using the true sign pattern
extracted from the corresponding column of the true adjacency matrix. Thus the
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sets of relevant and irrelevant covariates are allowed to vary from one problem to
another. Simulating 100 samples of each simulation setting, we observed that even
in a favorable setup with twice as many observations as variables (p = 20 genes) the
irrepresentability condition fails for 30% of genes in average . With p = 20 genes
and only n = 10 observations this assumption fails in average for 51% of the genes.
In other words, for around half of the genes we cannot expect the LASSO to recover
the exact sign pattern. See Table 1 for details. Admittedly, the irrepresentability
condition is a really strong assumption, necessary and sufficient for exact sign re-
covery, that is to say not only the exact neighborhoods (no false positives, no false
negatives) but also the exact signs of the correlations. Yet since the simulated val-
ues are quite well separated between true zeros and true nonzeros we would have
expected that this hypothesis would have been much more validated. Information
about the validity of the restricted eigen-value assumptions (Bickel et al. 2009)
would be greatly appreciated to compensate for such pessimistic results, but these
are computationally intractable. Adaptation of Juditsky and Nemirovsky (2008)’s
results to the present context could be of great benefit.

n/p�p 20 100
2 0.30 (0.23) -
1 0.41 (0.23) 0.37 (0.15)

1/2 0.51 (0.18) 0.42 (0.12)

Table 1: Average proportion of genes for which the irrepresentability condition does
not hold and standard error in each simulation setting.

Discussion of Simulation Results. Results are presented in Figure 1 under the
form of Barcharts. Figure 2 illustrates the case where p = 100 by giving boxplots
for the distributions of Precision, Recall and Fallout.

Compared methods differ with the type of setting. First of all, since the Shrink-
age method (particularly the local false discovery rate step) relies on the hypothesis
that p is large, we do not consider it fair to apply it to the small network setting. Re-
versely, for computing time reasons we decided to restrict the application of G1DBN
to the graphs of size p = 20.

Penalties for the LASSO based methods were chosen on the basis of either the
BIC or AIC criterion. Although theory states that the BIC ought to outperform the
AIC in terms of model selection (Zou et al. 2007), we observed that in practice
the BIC criterion might be too conservative when n is small compared to p. In
that situation, it might be interesting to favor the less stringent AIC criterion which
will induce a higher recall rate for not such a large loss in precision. Note that the
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¨

penalty choice based on the AIC or the BIC can lead to choose the null model as
best model. In that case, Precision cannot be defined. We thus show the results for
precision over all simulations where at least one variable was included.

The first point worth noting in Figure 1 is that in all settings the LASSO is out-
performed by weighted-LASSO methods and others. This quick check confirms the
interest of compensating for the bias induced by `1 regularization on large coeffi-
cients. It is also possible that what we observe about the validity of the irrepre-
sentability condition jeopardizes the performances of the single-penalty LASSO. In
line with Table 1, the LASSO performs particularly badly when the ratio n/p is not
favorable, with recall and precision rates under 20% when p = 20, n = 10. It even
performs so poorly that it deprecates the inference based on adaptive weights. A pri-
ori information on where the true zeros might compensate for this apparent lack of
“neighborhood stability”, using Meinshausen and Buhlmann’s vocabulary, and ex-
plain why the KnwCl penalty is far more accurate (precision of 84% in average for
a recall of nearly 50% in average for the same simulation setting p = 20, n = 10).

As expected, in all settings (except when n is really too small compared to p)
the Adaptive penalty improves the precision but at the price of a smaller recall rate.
On the contrary, the inferred classification InfCl allows to improve the precision
without undermining the recall rate. However, both methods are highly dependent
on the initial LASSO estimate. Therefore, the gain in precision resulting from such
methods decreases with the n/p ratio.

Benefitting from a certain amount of supplementary information, the KnwCl
penalty leads to a clear increase in both precision and recall. Particularly when
little information is available in terms of number of observations, taking a priori
information about which genes are potential regulators and which are not into ac-
count improves the results dramatically. This is true when compared to all LASSO

based methods but generalizes to Shrinkage, Renet-VAR and G1DBN. Admittedly,
Renet-VAR leads to higher precision values with medium sized graphs, but it is
compensated by smaller recall rates.

Table 1 shows naturally that we cannot expect too much from very extreme set-
tings (p = 800, n = 20, that is, the Spellman et al.’s settings). Average Recall rate is
less than 20% for all methods except the KnwCl penalty. In this case, knowledge of
potential hubs allows the recall rate to almost double in average while increasing the
precision. Note however that even with this supplementary information precision
rates never exceed 50%.

To finish with, we would like to lay the emphasis on computing times. For this
we let the number of nodes range from 5 to 185 and fixed the number of observations
at half the maximum number of nodes, i.e. n = 92. This leads to a ratio n/p ranging
from 0.05 to 2. Computing times for the weighted-LASSO with inference of the
classification InfCl and selection of the best penalty, Renet-VAR and G1DBN are
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Figure 1: Bar charts of Precision and Recall rates for each method and simulation
setting, averaged over all simulation samples.

presented in the log-log scale in Figure 3. We can see that running times for Renet-
VAR and G1DBN can become a handicap as soon as p gets large while computing
times for InfCl rarely exceed 2 minutes.

4.2 Yeast Data
We confronted our model to time measurements of Saccharomyces cerevisiae gene
expression data collected by Spellman et al. (1998). We focus on the subset of
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Figure 2: Boxplots of Precision, Recall and Fallout statistics for all methods except
Shrinkage in a setup p = 100, for 200 simulated data sets. Best Lasso penalties
chosen on the basis of the BIC criterion.
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(including inference of classes). Intel Dual Core 3.40 GHz processor.

genes they identified as periodic, i.e. genes whose transcription levels over time
show evidence that they are cell-cycle regulated.

Remarks on the Data Set. This dataset is one of the first microarray experiments.
It is thus doomed to be rather noisy, contrary to the simulated data sets. Besides,
we had to face the problem of missing values, which appeared on some of the
most important genes. We imputed them as the mean of the two closer known
observations in time for the gene considered, before and after the time point of
interest.

On top of its noisiness, Spellman et al.’s data set is particularly hard to tackle
from a statistical view point. Information is provided on 786 genes for only 18
time points. This implies that using our algorithm we cannot activate more than
17 ∗ 786 = 13362 edges out of 789 ∗ 786 = 617796 possible ones, that is to say
2.2%.

However, we can rely on experimental conclusions on yeast gene regulation
networks to collect target information about the true edges of the graph. We com-
pare our results to the adjacency matrix provided by the Yeastract database (www.
yeastract.com). We retain information on documented direct relationships,
that is to say direct regulations confirmed by published experimental results.

Note however that this theoretical benchmark is biased in two ways. First, some
true edges might be missing because all regulations might not have been confirmed
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by experiments yet. Second, this graph gathers all reported regulations, whatever
the conditions of the experiment. Some might not actually happen during the precise
experiment we consider. We can suppose the effect of the first bias to be low in a
model organism such as Saccharomyces cerevisiae. The effect of the second bias
is much more likely however, since measurements are all made while cells are at
the beginning of their growth, growing until ready for DNA synthesis. We cannot
expect the whole range of possible regulations to happen in such a small portion of
the cell cycle.

This dataset illustrates quite well the biological properties our model is based
upon. First, documented information reveals the existence of 1385 true edges
(among more than 600000 possible ones in theory). The theoretical graph is thus
extremely sparse. Secondly, the hub structure is quite clear: edges leave from only
26 out of 786 genes. Hence knowledge of the hubs provides crucial information on
the position of edges. This phenomenon also clearly appears on Figure 4. Incoming
degrees never exceed 20 but only 1 is null. On the contrary, outgoing degrees are
null for the vast majority of genes. Significant degrees appear as outliers in this
distribution, reaching up to 150 for some of them.
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Figure 4: Boxplots of incoming and outgoing degrees in Yeast theoretical adjacency
matrix

Discussion of the Results. The setting is much harder than in the first simulated
data sets, with a ratio n/p = 2.3% as well as harder than the last simulated dataset
with less separated correlations between existing and non existing edges. Results
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presented in Table 2 show quite well the difficulty all methods encounter in front of
this data set. Results for the Shrinkage approach are not shown because the local
false discovery rate step included in this method was heavily flawed by the lack of
separability between edges and non edges. Except for the KnwCl penalty, all LASSO

based estimators are reduced to the null model. Both the BIC and AIC criteria do
not find the increase in likelihood large enough to compensate for the complexity of
any model with at least one edge. Performances of the KnwCl penalty and Renet-
VAR remain lower than what we could expect from simulated results.

Models Lasso Adaptive KnownCl InferCl Renet

Precision - - 0.082 - 0.004
Recall 0 0 0.068 0 0.003
Fallout 0 0 0.002 0 0.002

Table 2: Precision, Recall and Fallout performances for all Lasso based methods
and Renet-VAR on Spellman et al.’s data set. Best Lasso penalties chosen on the
basis of the BIC criterion.

Many reasons for such bad perfomances could be thought of. We already men-
tionned the noisiness of the data, which quite hardly differentiated the edges from
non edges. Second, homogeneity of the VAR1 model might be too strong an as-
sumption. Last but not least, when looking more closely at how data were collected
we noticed that measurements were made every 7 minutes, which might be long
enough for dependencies to vanish. Also, since we measure values related to the
cell cycle, measurements were necessarily made on different cells each time, thus
measuring the expression levels on different individuals at each time point. In brief,
this apparently longitudinal data set might share more common points with i.i.d.
models than with VAR1 processes.

4.3 E. coli S.O.S. DNA Repair Network
In this section we quit the high dimensional setup and compare the performances of
all methods in a much easier framework. We focus on a sub-network from E. Coli
S.O.S. DNA repair network analyzed by Ronen et al. 1. Data provide information
on the main 8 genes of the S.O.S. network (uvrD,lexA,umuD,recA,uvrA,uvrY,ruvA
and polB) across 50 time points. Measurements rely on precise expression kinetics
which allow Ronen et al. to monitor mRNA expression levels every 6 min after
exposition of the DNA to UV light at time 0. We will not dwell on the measurement

1data downloadable on Uri Alon’s homepage, http://www.weizmann.ac.il/mcb/UriAlon/
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technology here (see Ronen et al. 2002, for details). Note however that the authors
do not measure the actual mRNA quantity present in the cell at time t but the in-
stant promoter activity of each gene. Equivalence between the two measurements
is guaranteed if the instant quantity of mRNA in the cell roughly equals its produc-
tion rate, that is to say if there is no accumulation of mRNA in the cell. Under this
assumption, Ronen et al. ’s data can be used as any microarray dataset.

E. coli S.O.S. DNA repair network provides a precise benchmark: specific reg-
ulatory interactions in response to DNA damage have been characterized. In other
words, we can rely on a theoretical regulatory network which represents the main
direct transcriptory regulations actually taking place during the experiment. Ac-
cording to the regularly updated EcoCyc database, lexA is the only regulator in this
subnetwork, regulating all genes including itself. Concretly, the protein LexA is at
the core of the regulation network, usually binding sites in the promoter regions of
S.O.S. genes to repress their expression. As soon as RecA senses DNA damage (by
binding to single-stranded DNA), it becomes activated and induces LexA autocleav-
age. The decrease in LexA concentration alleviates the repression of S.O.S. genes.
When damage is repaired, the level of activated RecA drops, LexA accumulates and
represses again all S.O.S. genes.

Detailed results are presented in Figure 5. We can see that performances differ
a lot from one experiment to another. Particularly, experiments 1 and 4 lead to
significantly poor results although nothing should a priori distinguish them from 2
or 3 (1 and 2, respectively 3 and 4, share the same U.V. exposure).

As on simulated data, the LASSO leads to poor results. G1DBN shows similarly
poor performances here. Quite surprisingly, Renet-VAR does not perform as well as
we could have expected from simulations. It reaches 50% of recall at the expense of
very low precision rates. Adaptive penalty improves more the quality of the estima-
tion than in the simulation studies. Now they increase the precision of the LASSO

without really undermining the recall rate. Inference of the classification outper-
forms these, with higher recall and precision rates. This is quite interesting since
except in experiments 1 and 4 where the LASSO provide almost no information,
inference of the classes seems quite good although the initial LASSO still shows
mediocre results. To finish with, the KnwCl penalty benefits quite well here from
its extra information since it outperforms all other methods and manages to reach
honest results even in datasets 1 and 4 which disturbed all other methods.

Inferred graphs on experiment 2 are shown in Figure 6. The regulatory activity
of lexA is more or less recovered by all methods. What is interesting is that a
common structure recurently shows up among false positives: regulations due to
uvrA. This regulation pattern is particularly what dominates experiment 4 and leads
to so poor results. Strangely, we could not find any mention of this regulatory
activity in the literature. Either there is a need for further biological research on
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Figure 5: Bar charts of Precision and Recall rates for each method and experiment.

this gene or there is an undirect regulation blurring the results. Another unknown
regulation dominates all inferred graphs: regulation of uvrY by polB. It is all the
more interesting as it survives the bad a priori that the KnwCl penalty holds against
it. Further biological investigation could want to look at this couple of genes more
closely.

In this respect, we could note that the regulatory effect of activated RecA on
LexA does not appear on these graphs, which we could see as a good point since
this is a post-transcriptional regulation. We would also like to lay the emphasis
on the fact that we here check selection consistency of all the methods but not
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their sign consistency. We only check whether we identify the right edges and
not the activation/inhibition processes associated to them. Looking more closely at
the estimated matrices, we can see that the (shrunk) correlations estimated between
lexA and the remaining genes are all positive and not negative as the literature would
tell. This would not be a flaw in all methods but a direct result of the limitations
of transcriptomic data. Indeed, we only observe mRNA production rates. As a
consequence, we cannot spot the decrease in concentration of protein LexA and
only observe that the expression of all genes suddenly increases, lexA included.

5 Conclusion
This paper proposes a weighted-LASSO algorithm designed to tackle time varying
gene expression data taking into account an underlying structure. We observe that in
a perfect VAR1 setting, taking time dependencies into account leads to dramatically
improved results for graph inference. In this particular framework, the proposed ap-
proach outperforms similar methods. Even when regulators and regulatees cannot
a priori been distinguished through analysis of the literature, inference of the clas-
sification improves a lot the performances of the LASSO. It therefore seems good
to advice that, whenever available, knowledge about potential transcription factors
should be taken into account and that basic knowledge on the topology of biological
networks should not be omitted in the modeling process. We also want to empha-
size the fact that this method reaches great results on networks of reasonable size
for always reasonnable computing times.
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Figure 6: Graphs inferred by the different methods on experiment 2 data. LASSO

penalties are chosen so as to maximize the BIC criterion. True positives are drawn
in black while false positives are shown in dashed gray.
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