Brain MRI Super-Resolution using Deep 3D Convolutional Networks
Résumé
Example-based single image super-resolution (SR) has recently shown outcomes with high reconstruction performance. Several methods based on neural networks have successfully introduced techniques into SR problem. In this paper, we propose a three-dimensional (3D) convolutional neural network to generate high-resolution (HR) brain image from its input low-resolution (LR) with the help of patches of other HR brain images. Our work demonstrates the need of fitting data and network parameters for 3D brain MRI.