Brain MRI Super-Resolution using Deep 3D Convolutional Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Brain MRI Super-Resolution using Deep 3D Convolutional Networks

Résumé

Example-based single image super-resolution (SR) has recently shown outcomes with high reconstruction performance. Several methods based on neural networks have successfully introduced techniques into SR problem. In this paper, we propose a three-dimensional (3D) convolutional neural network to generate high-resolution (HR) brain image from its input low-resolution (LR) with the help of patches of other HR brain images. Our work demonstrates the need of fitting data and network parameters for 3D brain MRI.
Fichier non déposé

Dates et versions

hal-01596811 , version 1 (28-09-2017)

Identifiants

Citer

Chi-Hieu Pham, Aurelien Ducournau, Ronan Fablet, François Rousseau. Brain MRI Super-Resolution using Deep 3D Convolutional Networks. ISBI 2017 : IEEE 14th International Symposium on Biomedical Imaging, Apr 2017, Melbourne, Australia. pp.197 - 200, ⟨10.1109/ISBI.2017.7950500⟩. ⟨hal-01596811⟩
328 Consultations
0 Téléchargements

Altmetric

Partager

More