Coupling physiology and mechanics in multicellular models of plant growth
Résumé
At the cellular level, plant growth results from the competition between the so-called turgor pressure and mechanical resistance from the cell walls. The turgor pressure itself results from a difference of osmotic pressure between the interior and the exterior of the cell: the plasmic membrane is semi-permeable, so that a higher solute (sugars, ions) concentration inside the cell leads to a water flux towards the cell and to a pressure rise; if the pressure exceeds a given threshold, the cell walls extend and the cell grows. Recently, different models of plant growth have attempted to incorporate mechanics of cell walls in tissue development [Boudon et al. 2015], but all of them make the assumption that turgor pressure is constant with time.
In this work, we go one step further and include a model of the regulation of turgor pressure in a multicellular framework.