Study on the loss of information caused by the "positivation" of graph kernels for 3D shapes - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Study on the loss of information caused by the "positivation" of graph kernels for 3D shapes

Résumé

In the presented experimental study, we compare the classification power of two variations of the same graph kernel. One variation is designed to produce semi-definite positive kernel matrices (K matching) and is an approximation of the other one, which is indefinite (Kmax). We show that using adaptated tools to deal with indefiniteness (KSVM), the original indefinite kernel outperforms its positive definite approximate version. We also propose a slight improvement of the KSVM method, which produces non sparse solutions, by adding a fast post-processing step that gives a sparser solution.
Fichier principal
Vignette du fichier
EmpStudy3DShapes&KSVM.pdf (608.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01593564 , version 1 (26-09-2017)

Identifiants

  • HAL Id : hal-01593564 , version 1

Citer

Gaëlle Loosli. Study on the loss of information caused by the "positivation" of graph kernels for 3D shapes. ESANN, Apr 2016, Bruges, Belgium. ⟨hal-01593564⟩
57 Consultations
29 Téléchargements

Partager

More