Distributions on homogeneous spaces and applications - Archive ouverte HAL
Article Dans Une Revue Progress in Mathematics Année : 2018

Distributions on homogeneous spaces and applications

Résumé

Let $G$ be a complex semisimple algebraic group. In 2006, Belkale-Kumar defined a new product $\odot_0$ on the cohomology group $H^*(G/P,{\mathbb C})$ of any projective $G$-homogeneous space $G/P$. Their definition uses the notion of Levi-movability for triples of Schubert varieties in $G/P$. In this article, we introduce a family of $G$-equivariant subbundles of the tangent bundle of $G/P$ and the associated filtration of the De Rham complex of $G/P$ viewed as a manifold. As a consequence, one gets a filtration of the ring $H^*(G/P,{\mathbb C})$ and proves that $\odot_0$ is the associated graded product. One of the aim, of this more intrinsic construction of $\odot_0$ is that there is a natural notion of fundamental class $[Y]_{\odot_0}\in(H^*(G/P,{\mathbb C}),\odot_0)$ for any irreducible subvariety $Y$ of $G/P$. Given two Schubert classes $\sigma_u$ and $\sigma_v$ in $H^*(G/P,{\mathbb C})$, we define a subvariety $\Sigma_u^v$ of $G/P$. This variety should play the role of the Richardson variety; more precisely, we conjecture that $[\Sigma_u^v]_{\odot_0}=\sigma_u\odot_0\sigma_v$. We give some evidence for this conjecture and prove special cases. Finally, we use the subbundles of $TG/P$ to give a geometric characterization of the $G$-homogeneous locus of any Schubert subvariety of $G/P$.
Fichier principal
Vignette du fichier
bkRichardson_revised.pdf (411.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01591262 , version 1 (21-09-2017)

Identifiants

Citer

N Ressayre. Distributions on homogeneous spaces and applications. Progress in Mathematics, 2018, Lie groups, geometry, and representation theory, 326, pp.481--526. ⟨hal-01591262⟩
90 Consultations
156 Téléchargements

Altmetric

Partager

More