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Let G be a complex semisimple group and let P be a parabolic subgroup of
G. In this paper, we are interested in the Belkale-Kumar product ®¢ on the
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Abstract

Let G be a complex semisimple algebraic group. In 2006, Belkale-
Kumar defined a new product ®g on the cohomology group H*(G/P,C)
of any projective G-homogeneous space G/P. Their definition uses the
notion of Levi-movability for triples of Schubert varieties in G/P.

In this article, we introduce a family of G-equivariant subbundles of
the tangent bundle of G/P and the associated filtration of the De Rham
complex of G/P viewed as a manifold. As a consequence one gets a filtra-
tion of the ring H*(G/P,C) and prove that ®¢ is the associated graded
product. One of the aim of this more intrinsic construction of ®¢ is that
there is a natural notion of fundamental class [Y]e, € (H*(G/P,C), ®o)
for any irreducible subvariety Y of G/P.

Given two Schubert classes o, and o, in H*(G/P,C), we define a
subvariety X;, of G/P. This variety should play the role of the Richardson
variety; more precisely, we conjecture that [X}]o, = cu®oo,. We give
some evidence for this conjecture, and prove special cases.

Finally, we use the subbundles of TG/P to give a geometric character-
ization of the G-homogeneous locus of any Schubert subvariety of G/P.

Introduction

cohomology group of the flag variety G/P.

The Belkale-Kumar product. Fix a maximal torus 7" and a Borel subgroup
B such that T'C B C P. Let W and Wp denote respectively the Weyl groups
of G and P. Let WF be the set of minimal length representative in the cosets of
W/Wp. For any w € W¥ | let X,, be the corresponding Schubert variety (that
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is, the closure of BwP/P) and let [X,,] € H*(G/P,C) be its cohomology class.
The structure coefficients cv, of the cup product are written as

LX) = ) Xl (1)

weWr

Let L be the Levi subgroup of P containing 7. This group acts on the tan-
gent space Tp,pG/P of G/P at the base point P/P. Moreover, this action is
multiplicity free and we have a unique decomposition

as sum of irreducible L-modules. It turns out that, for any w € W7, the
tangent space T,y := Tp/pw~ ' Xy, of the variety w™'X,, at the smooth point
P/P decomposes as

To=ViNTy) @& & (Vs NTy). (3)

Set T := T,,NV;. Since [X, ] has degree 2(dim(G/P) — dim(T},)) in the graded
algebra H*(G/P), if ¢¥, # 0 then

dim(7,) + dim(7y,) = dim(G/P) + dim(T,), 4)

or equivalently

S S

> (dim(Tg) + dim(Tj)> => (dim(m + dim(T;’U)). (5)

i=1 i=1

The Belkale-Kumar product requires the equality (5) to hold term by term.
More precisely, the structure constants ¢, of the Belkale-Kumar product [BK06],

[XuoolXu] = D & (Xl (6)

weWwr

can be defined as follows (see [RR11, Proposition 2.4]):

(7)

w [y ifVI<i<s dim(T})+ dim(T}) = dim(V;) 4+ dim(77,),
“uv =9 0 otherwise.

The product ®¢ defined in such a way is associative and satisfies Poincaré du-
ality. The Belkale-Kumar product was proved to be the more relevant product
for describing the Littlewood-Richardson cone (see [BK06, Res10, Resl1al).

Motivations. If G/ P is cominuscule then Tp,pG/ P is an irreducible L-module
(that is, s = 1). In this case, the Belkale-Kumar product is simply the cup
product. This paper is motivated by the guess that several known results for
cominuscule G/P could be generalized to any G/P using the Belkale-Kumar
product. In particular, it might be a first step toward a positive geometric



uniform combinatorial rule for computing the coefficients ¢,. Indeed, we define
a subvariety 3% which is encoded by combinatorial datum (precisely a subset
of roots of G). We also define a Belkale-Kumar fundamental class [¥%]q, and
conjecture that [X%]e, = [Xu]®o[X]-

A geometric construction of the Belkale-Kumar ring. The first aim of
this paper is to give a geometric construction of the Belkale-Kumar ring which
does not deal with the Schubert basis. Consider the connected center Z of L
and its character group X (Z). The Azad-Barry-Seitz theorem (see [ABS90])
asserts that each V; in the decomposition (2) is an isotipical component for the
action of Z associated to some weight denoted by a; € X(Z). The group P
acts on Tp,pG/P but does not stabilize the decomposition (2). But, the group
X(Z) is endowed with a partial order = (see Section 3.1 for details), such that
for any o € X(Z) the sum

V7% = B, aVi (8)

is P-stable. Since V7% is P-stable, it induces a G-homogeneous subbundle
T7*G/P of the tangent bundle TG/P. We obtain a family of distributions
indexed by X (Z). This family forms a decreasing multi-filtration: if a>/ then
T7*G/ P is a subbundle of T#?G/P. Moreover, these distributions are globally
integrable in the sense that

[T7°G/P,T7PG/P) c T7**AG/P. (9)

This allows us to define a filtration (“a la Hodge”) of the De Rham complex and
so of the algebra H*(G/P, C) indexed by the group X (Z) x Z. We consider the
associated graded algebra.

Theorem 1 The (X(Z) x Z)-graded algebra GrH*(G/P,C) associated to the
(X (Z)XZ)-filtration is isomorphic to the Belkale-Kumar algebra (H*(G/P,C), ®p).

The first step to get Theorem 1 is to give it a precise sense defining the
orders on X(Z) and X (Z) x Z and the filtrations. The key point to prove the
isomorphism is that the Schubert basis ([Xy])wewr of H(G/P, C) is adapted to
the filtration. Indeed each subspace of the filtration is spanned by the Schubert
classes it contains. To obtain this result, we use Kostant’s harmonic forms
[Kos61].

Theorem 1 is closed to [BK06, Theorem 43] obtained by Belkale-Kumar.
In [BKOG], the filtration on H*(G/P,C) is defined using the Schubert basis.
On the other hand, the filtration on H},z(G/P,C) is defined using Kostant’s
K-invariant forms (where K is a compact form of G). Here, the filtration is
defined independently of any basis or any choice of a compact form of G.

This “intrinsic” definition of the Belkale-Kumar also gives a pleasant inter-
pretation of the functoriality result of [RR11, Theorem 1.1]. Indeed, let 7 be a
one-parameter subgroup of Z such that

Va € X (Z) a0 = (1,a) >0,



and
Vi<i#£j<s (1, 0) # (T, ). (10)
Setting for any n € Z
VZW = GB(T,a}Zn‘/ia
one gets a globally integrable family of distributions on G/P indexed by Z.
Then, one gets a Z-filtration of the ring H*(G/P,C). By (6) and (10), the

associated Z-graded ring is isomorphic to Gr H*(G/P,C). Then, [RR11, Theo-
rem 1.1] is a direct consequence of the immediate lemma 12 below.

A conjecture. The main motivation to show Theorem 1 is to define the funda-
mental class for the Belkale-Kumar product of any irreducible subvariety Y of
G/P. This class [Y]g, which belongs to Gr H*(G/ P, C) is defined in Section 4.4.

Let wg and wf be the longest elements of W and Wp respectively. If v € W
then vV := wovw{ belongs to W and [X,v] is the Poincaré dual class of [X,].
Consider the weak Bruhat order < on W¥. We are interested in the product
[X.]®0[X,] € H(G/P,C), for given u and v in WF. Lemma 24 below shows
that if [X,]®o[Xy] # 0 then v¥ <wu. Assume that vV <u and consider the group

HY :=u'Bu N wv ' Bowl. (11)

It is a closed connected subgroup of G containing 7'; in particular, it can be
encoded by its set ®; of roots. Let X7 denote the closure of the H-orbit of
P/P:

xU = Hy P/P. (12)

Another characterization of this subvariety is given by the following state-
ment.

Proposition 1 The variety X7, is the unique irreducible component of the in-
tersection w1t X, N wéjv’lXU containing P/P. Moreover, this intersection is
transverse along X7,.

Our main conjecture can be stated as follow.
Conjecture 1 If vV < u then
[E)es = [Xu]®o[X,] € GrH*(G/P,C).
Write
Siloe = Y dus[Xul:

weWw?r

By Proposition 11 d¥, are integers. Moreover, Conjecture 1 is equivalent to
év, = d¥, for any w € WF. The first evidence is the following weaker result.

Proposition 2 Then



(1) dijy #0 < &y, #0;
(i) diy <

Known cases. Conjecture 1 generalizes another one for G/B. Indeed, if G/P =
G/B is a complete flag variety then Conjecture 1 is equivalent to the following
one.

Conjecture 2 For G/B and any u,v, and w in W, the structure constant ¢¥,
is equal to 1 if for any 1 <i < s, dim(T7?) + dim(T?) = dim(V;) + dim(T%)) and
0 otherwise.

In particular, Conjecture 2 implies that we have a uniform combinatorial and
geometric model for the Belkale-Kumar product. Conjecture 2 was explicitly
stated in [DR09]. E. Richmond proved in [Ric09] and [Ric12] this conjecture
for G = SL,,(C) or G = Sp,,,(C). In Section 7, we prove it for G = SO2,41(C)
(this proof is certainly known from some specialists but I have shortly included
it for convenience). Very rencently, Dimitrov-Roth got also a proof for classical
groups and G2 [DR17]. Using [BK06, Corollary 44], we wrote a program [Res13]
to check this conjecture: it is checked in type Fy and Ej.

Conjecture 1 will be proved in type A in a forthcoming paper.

Combinatorial evidences. Consider the following degenerate version of Con-
jecture 1.

Conjecture 3 The product [X,|®o[X,] only depends on the set ®L.

The expression of the Belkale-Kumar structure coefficients as products given
in [Ric09] shows that Conjecture 3 holds in type A. Consider now the case
G = SO02,+1(C) or Sp,,(C) and P maximal. In this case, in [Resl2], it is
proved that the set of triples (u,v,w) € W¥ such that ¢¥, = 1 only depends
on @Y, according to Conjecture 3. If G/P is cominuscule &Y, = cl, for any
(u,v,w) € WF. Then the Thomas-Young combinatorial rule [TY09] for ¢¥,
implies that Conjecture 3 holds.

Distributions and Schubert varieties. In Section 3, we study the restriction
of the distributions to the Schubert varieties X,,. More precisely, for any = in X,
and « € X (Z) we are interested in T, X,,NT7*G/P. For « fixed, the dimension
of T, X, N TfO‘G/P has a fixed value for x € X, general and can jump for x
in a strict subvariety of X,,. Consider the maximal open subset X? of X, such
that for any a € X (Z) the dimension of T, X, NT7*G/P does not depend on
x € X0. Consider the global stabilizer @, of X,, that is, the set of g € G such
that ¢g. X, = X,. Since X, is B-stable, @), is a standard parabolic subgroup of
G.



Proposition 3 With above notation, we have
X% =Q,.uP/P.

If G/P is cominuscule, the filtration is trivial and Proposition 3 asserts that
Q. acts transitively on the smooth locus of X,,. This was previously proved
by Brion and Polo in [BP00]. Proposition 3 is in the philosophy to generalize
known results from cominuscule homogeneous spaces to any homogeneous space
G/ P, using the Belkale-Kumar product.

Note that Proposition 3 is equivalent to [BKR12, Theorem 7.4]. Neverthe-
less, we think that the distributions give a pleasant interpretation of this result.
In Section 3 we present a proof using the properties of the Peterson map.

Retruning to the setting of Conjecture 1, we assume moreover that the in-
tersection =X, N wlv™1 X, is proper. Then Conjecture 1 is implied by the
fact that 3¢ is the only irreducible component of this intersection that has the
same X (Z)-dimension (see Section 2.3). Proposition 3 is clearly related to this
version of Conjecture 1.
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2 Infinitesimal filtrations

2.1 The case of a vector space

Ordered group. Let I be a finitely generated free abelian group whose the law
is denoted by +. Consider the vector space '®7Q. Assume that a closed strictly
convex cone C in I' ®z Q of nonempty interior is given. Moreover, we assume
that C is rational polyhedral, that is defined by finitely many linear rational
inequalities, or equivalently generated, as a cone, by finitely many vectors in
I' ®z Q. We consider the partial order < on I' defined by a=<f if and only if
B — a belongs to C. The group I' endowed with the order < is an ordered group:

Va, B, 7€l axf = (a+7)<(B+7). (13)

The order < satisfies the following version of the Ramsey theorem (see also
Bolzano-Weirstrass’ theorem).

Lemma 1 Let (ap)nen be a sequence of pairwise distinct elements of T such
that o, <0 for any n.
Then there exists a subsequence (Qg(n))nen such that for any n

Qp(n+1) Qg (n)-



Proof. Let ¢1,...,¢s be elements of Hom(T', Z) such that « € C if and only if
pi(z) >0 forany i =1,...,s.
Consider first the sequence 1 (a,) and set

L ={n|Vm=n ¢i(am) > p1(an)}.

Assume, for a contradiction that I; is infinite. Denoting by ¢(k) the k" element
of I, we get an increasing subsequence of (¢1(ay))nen. But ¢1(ay,) € Z and
¢1(an) < 0: a contradiction. Hence I is finite.

Up to taking a subsequence, we may assume that I; is empty; that is

Vn >0 Im>n pi(am) < 1(an).

This property allows to construct a nonincreasing subsequence of ¢1 («v,, ). Hence,
by considering such a subsequence, we may assume that

Vn>0 ©1(nt1) < @1(am).

By successively proceeding similarly, for i = 2,...,s, one gets a subsequence
Qi (n) Such that

Vi=1,...,n Vn ©i(apnt1)) < @1(aym))-

Since the o, are pairwise distinct, we deduce that aun41)<Qy(n)- O

Remark. Consider the cone C = {(z,y) € R? : y > 0 and v2z —y > 0} and
the group I' = Z2. Lemma 1 does not hold for the induced order 3= showing the
rationality assumption on C is necessary. Indeed, denote by 7 : R? — R the
linear projection on the line y = 0 with kernel the line y = v/2z. Then 7(Z?)

is dense as the group generated by 1 and g In particular, one can construct

a sequence (T, Yn)nen such that g, 1 < yn < 0 and 0 > V22,01 — Y1 >
V2%, — yn. Then the elements of the sequence are pairwise incomparable for
the partial order »=.

I-filtration. The group I' is used here to index filtrations.

Definition. Let V be a finite dimensional real or complex vector space. A
I'-filtration of V is a collection F7PV of linear subspaces of V indexed by g € T’
satisfying

(i) axB = F#PV C Froy,
(ii) 3B €T s.t. V = Frhoy,
(iii) if F7*V # {0} then a=<0.

Lemma 2 Let (F7PV)ger be a T-filtration. Then the set {F7PV |3 € T'} of
linear subspaces of V' is finite.



Proof. By contradiction, assume that there exists a sequence F7%V of pair-
wise distinct linear subspaces of V. By axiom (iii), a,, <0 for any but eventu-
ally one n. Now, Lemma 1 implies that there exists a decreasing subsequence
Qg(k)- Since the linear subspaces F' 7anV/ are pairwise distinct, the subsequence
F7%®V is increasing. This contradicts the assumption that V is finite dimen-
sional. (|

I-filtrations coming from decompositions. For each g € T, Za>ﬁ Fray
is a linear subspace of 7V . Let us choose a supplementary subspace S¥:

FPPV = SP e > " F7°V. (14)
a>pB

One of the motivation for axiom (iii) in the definition of I'-filtration is the
following lemma.

Lemma 3 With above notation,

FPOV =3~ 5~ (15)

axFp

Proof. It is clear that the sum is contained in FZ#V. Conversely, since V is
finite dimensional, we have

FAYV =SB @ (FPV 4. 4 F7V),

for some a; € T such that «;>f. By axiom (iii), we may assume that for any
i=1,...,5 we have a;<0. If each F7%V satisfies the lemma, the lemma is
proved for F7PV. Otherwise, we restart the proof with each a; in place of j3.
Since I' is discrete, the set of a € I' such that 0>« is finite. In particular,
the procedure ends by axiom (iii) of the definition of a I'-filtration. O

Conversely, assume that a linear subspace S of V is given for any a € T'.
If these linear subspaces satisfy (S* # {0} = a=<0), and there exist a1, ..., as
such that V' = S* 4 ... + S§% then the formula (15) defines a I-filtration of
V. The I'-filtration of V is said to come from a decomposition if there exists a
decomposition

V=@ s, with §* # {0} = a<0, (16)
acl’

such that (15) holds.

The f-dimension vector (f stand for filtered) of the I-filtration, is the vector
(fd?(V))per of NI defined by

I — N, g+ fd?(V) = dim(F7°V),



for any 8 € I'. Define the grading associated to the I'-filtration by setting

G’ v rev d GV =P’V (17)
r = = oy A rV = V. 1
Za>6 Frev BeT
The g-dimension vector (g stands for graded) (gd?(V))ger of the Ifiltration is
defined by

I — N, 8 gd?(V) := dim(Gr? V).

Lemma 4 The I'-filtration comes from a decomposition if and only if
dim(Gr V) = dim(V). (18)

In this case, the g-dimension vector of V only depends on the f-dimension vector
of V.

Proof. Assume first that the I'-filtration comes from a decomposition. Fix
linear subspaces S® satisfying the conditions (16) and (15). For any 8 € T', the
identity (14) holds and dim(Gr” V) = dim(S?). Hence the lemma, follows from
the condition (16).

Conversely, assume that the condition (18) is fulfilled and choose linear sub-
spaces S¥ satisfying (14). Let By € I such that F7%V = V. Lemma 3 implies
that V=735 5 S8, The condition (18) implies that the sum is direct. More-
over, it implies that S7 = {0} if v %&Bp. Using Lemma 3 once again, we deduce
that the filtration comes from the decomposition V = 69[3 Sh.

If fd? =0 then F7PV = {0}, Gr” = {0} and gd® = 0. Let T4, be the set
of maximal elements among the elements § in T' satisfying F7%V # {0}. For
B € Timax, we have gd? (V) = fd?(V). Et caetera. O

Example. Consider the group Z? endowed with the order (a,b)<(a’,b’) if
and only if a < a’ and b < ¥'. Fix a two dimensional vector space V and three
pairwise distinct lines [1, lo, and I3 in V. Consider the following family (57)sez2
of linear subspaces of V: §(=20) =, §0:=2) — 1, §(-1.=D — 13 and §° = {0}
if 8 ¢ {(-2,0),(0,—2),(—1,—1)}. The filtration defined by the formula (15)
does not come from a decomposition. More precisely, GrV =~ [} & Iy @ I3 has
dimension three whereas V' has dimension two.

Another useful notion is the weight p(V') of the I-filtration of V' defined by

p(V) =D gd (V)5. (19)

per

Filtrations induced on a linear subspace. Let W be a linear subspace of
V. The I'filtration on V' induces one on W by setting

Vel F7PW .=WnF7PV. (20)

10



Lemma 5 If the I-filtration on V' comes from a decomposition then the induced
I-filtration on W comes from a decomposition.

Proof. Fix linear subspaces S‘B/ and Sﬁ, of V such that
V=S8, aF7V, W =285 aF7PW, S cSp.
Lemma 3 implies that

w=>" Sy (21)

BeT
Lemma 4 shows
v=@s.
Ber
Since Sﬁ, C Se it follows that the sum (21) is direct. O

Filtrations induced on p-forms. Let p a nonnegative integer. A I'-filtration
of V induces a filtration on the space A” V* of skewsymmetric p-forms on V as
follows.

Definition. Let 3 € T. Denote by <S8 AP V* the linear subspace of forms
w € AP V* such that for any any a,...,a, €T, for any v; € F7*V we have

ar + -+ apAB = w(v,. .., vp) =0. (22)

The first properties of these linear subspaces are.
Proposition 4 (i) If By then FS8 NP V* € FSY AP V>,

(ii) Let By € T be such that F75V = V. If FS7Y NP V* £ {0} then v=pfo.

(iii) We have FSO NP V* = NP V*,

(iv) For B and ~ in T, we have FSP NP V* A FST\TV* € PSPy APy,
Proof. If 8<v then oy + -+ + ap &7y implies a; + -+ + ap&AB. Hence the
conditions defining F<7 AP V* are conditions defining F'<? AP V*. The first
assertion follows.

Let v#pBo. The definition of FS7 AP V* with a; = -+ = o, = By implies
that F<7 A” V* is reduced to zero.
Let w be any p-form. We want to prove that w € FSY AP V*. Let aq, ..., q

such that a;+- - -+a;, Z0. Then some i satisfies a;, Z0. In particular, F7*0V =
{0}. This implies that w is zero on F7*1V x ... x F7%:V,

11



Let w; and wy belong to FS8 AP V* and FS* ATV* respectively. Let
Qi,...,0p4q be such that ag + -+ + aprq A8 + 7. Let v; € F7* V. Then

(W1 Aw2)(V1, ..., Vptq) =

(23)
—(piq)! desp+q s(o)wl (Ug(l), e ,Ug(p)).OJg(UU(erl), . ,UU(erq)).

It is sufficient to prove that any term in the sum (23) is zero. Since (o, (1) +
st O‘U(p)) + (ao(p+l) +-+ O‘U(p-‘rq))?éﬂ +, either (aa(l) +- O‘a(p))%ﬂ or

(Qg(pg1) +** + Qg(prq)) &Y. In the two cases, the product
w1 (vo'(l)v S 7vo(p))'w2(va(p+1)a s ava(p-l-q))

is equal to zero. (I

Remark. The three first assertions of Proposition 4 mean that (F'S? AP V*)ger
is a [-filtration of A’ V* up to the changing of index 8 + pBy — 3. Indeed,
even for p = 1, taking orthogonal reverses inclusions and exchanges {0} with
the whole space.

Filtrations coming from a decomposition.

Lemma 6 Let p be a positive integer. If the I-filtration on V comes from
a decomposition then the induced T-filtration F7PPo=B AP V* on AP V* comes
from a decomposition.

Proof. Write
V= @Sa and F7PV = @ Se,

aecl az=p

with (S*V # {0} = a<0). For any 8 € I, denote by T the orthogonal of
EB(#B S in V*. Tt can be identified with the dual of S# and

ve=pr”. (24)
per

For any collection of subspaces Fi, ..., F, of V¥, n(F} ® --- ® F},) denotes the
subspace of APV* obtained by adding wedge products of elements of the sub-
spaces F;. For any 6 € T, set

WvHl= Y a(@e---Tk)
B+t Bp=0

It is clear that (24) implies that

NV =Pnrve)P.

2

Moreover, for any § € T, (A’PV*)? is the set of p-forms w such that for any
a; € T and v; € S such that oy + -+ + o # 6 we have w(v1,...,v,) = 0.

12



We claim that

FSEAP Ve = P(AV)°. (25)
0B

Indeed F~# AP V* is the subspace of forms w € AP V* such that for any
or,...,ap €', any v; € S, we have

al+...+ap7€6:>w(’01,---7vp):0'

Let 6 such that (APV*)? £ {0}. Then there exist f31,..., 3, in T such that
Bi+--+ B, =0 and TP # {0} for any i. Hence S% # {0} for any i and 3;<0.
We deduce that 6<0. O
2.2 The case of manifolds

Let M be a smooth connected manifold and let T M denote its tangent bundle.
Here comes the central definition of this work.

Definition. An infinitesimal T -filtration of M is a collection FZ8T M of vector
subbundles of TM indexed by 5 € I' satisfying

() a=B = F#PTM c FFoTM,
(i) 360 €T s.t. TM = F#5TM,
(iii) if F7“TM # {0} then a<0.

The f-rank vector of the infinitesimal filtration is the map
B tk(F7PTM), (26)
and belongs to NT'.

Definition. An infinitesimal I'-filtration is said to come from a decomposition
if for any « € M, the I'-filtration of T, M comes from a decomposition.

Remark. We do not require a I'-decomposition of the tangent bundle T'M but
only for a punctual decomposition.

Lemma 7 Consider an infinitesimal T-filtration on M coming from a decom-

position. Then for any 3, the sum Za>,@ FZTM is a subbundle of TM.

Proof. Fix x in M and a I'-decomposition of T, M = &,5¢ such that the
identities (16) and (15) hold. Then 3° 5 F7*T, M =3 .5 S*. In particular,
its dimension only depends on the g-dimension vector of the filtration of T, M.
This g-dimension vector only depends on the f-dimension by Lemma 4. It

13



follows that the dimension of ) . 5 F7>T, M does not depend on z. Now, the
lemma follows from classical properties of vector subdundles. O

Define the grading associated to the infinitesimal I'-filtration coming from a
decomposition by setting

F8TM
Gr'TM = ————— and GrTM =G’ TM. (27)
Fa
Yarp FPOTM e

They are vector bundles on M. The g-rank vector (gd°(M))ser of the T-
filtration is defined by

I — N, 8 — gd?(M) = rk(Gr? TM).

2.3 The case of varieties

Let X be a smooth complex irreducible variety. Consider the complex tangent
bundle TX.

Definition. An infinitesimal T'-filtration of X is said to be algebraic if each
F7PTX is a complex algebraic vector subbundle of TX.

Let Y be an irreducible subvariety of X. For y € Y, the Zariski-tangent
space T,,Y of Y at the point y is a complex subspace of T}, X. Set

FAPT,Y = F7PT, X NT,Y. (28)

Even if Y is smooth, Fﬂ;TyY does not define a subbundle of TY since its
dimension depends on y.

Lemma 8 For any € ' and y € Y, there exists an open neighborhood U of
y' in'Y such that for any y' € U we have

dim(F7PT,Y) > dim(F7°T, Y). (29)

Proof. Locally in y € Y the subspace F*ﬂTyY of T, X can be expressed as the
kernel of a matrix whose coefficients depends algebraically on y. The lemma
follows. (|

The point y € Y is said to be I'-regular if

VB eT dim(F7PT,Y) = min dim(F7PT,Y). (30)
y'e
Since I is countable, Lemma 8 shows that a very general point in Y is I'-regular.
More precisely, Lemma 2 implies that the set of I'-regular points in Y is open.
The open set of I-regular points of Y is denoted by YT ™8 If z € YT '8 the
g-dimesnion of T, Y is called the I'-dimension of Y.

14



3 Infinitesimal filtration of G/P and Schubert va-
rieties

3.1 Infinitesimal filtration of G/P

As in the introduction, G is a complex semisimple group, P is a parabolic
subgroup of G, T' C B C P are a fixed maximal torus and a Borel subgroup.
Moreover, L denotes the Levi subgroup of P containing 7" and Z denotes the
neutral component of its center. The group of multiplicative characters of Z
is denoted by X(Z). Set I' = X(Z). Our main example is an infinitesimal
X (Z)-filtration of G/ P.

Let S be any torus. If V is any S-module then ®(V,S) denotes the set of
nonzero weights of S on V. For f € X(5), Vs denotes the eigenspace of weight
B.

Denote by p and g the Lie algebras of P and G and consider the convex cone
C generated by ®(p,Z) in X(Z) ® Q. It is a closed strictly convex polyhedral
cone of nonempty interior in X (Z)®Q. The associated order on X (Z) is denoted
by . The decomposition of g/p under the action of Z:

a/p= P @/pa (31)

aeX(2)

is supported on —C N X(Z). The group P acts on g/p by the adjoint action
but does not stabilize the decomposition (31). For any 8 € X(Z), the linear
subspace

FrPglp= €  (9/p)a (32)
a€ X(2)
=

is P-stable. More precisely, the set of F7g/p forms a P-stable X (Z)-filtration
of g/p coming from the decomposition (31). The tangent bundle T'(G/P) iden-
tifies with the fiber bundle G x p g/p over G/P. These remarks allow to define a
G-equivariant infinitesimal X (Z)-filtration on G/ P by setting for any 8 € X (Z)

F7PT(G/P) =G xp F7Pg/p. (33)

Consider the set ®(g/p,T) of weights of T acting on g/p. Then ®(g/p,T)
is a subset of ®. Let w belong to W and consider the centered Schubert
variety w~=!X,,. Then P/P belongs to the open w~!Bw-orbit in w=!'X,,. In
particular, it is X (Z)-regular. Denote by ®(w) the set of weights of T acting on
Tp/pw ' X,. Then ®(w) = &~ Nw '®T is the inversion set of w. Moreover,
®(w) is contained in ®(g/p,T). Since P/P is X (Z)-regular in w=X,, the g-
dimension of X, is equal to the g-dimension of Tp, pw'X,. The following
result follows directly:

15



Lemma 9 The g-dimension of gd(X,) of X, is equal to

X(Z) — Z>o
a — #{0ecd(w) : Oz = a},

where 0 belongs to X(T') and 0,z denotes its restriction to Z.

3.2 Peterson’s application

Let V/ be any T-module without multiplicity and let 8 € X(T). Under the
action of Ker 8 € T, V'’ decomposes

V/ - @ (@kez O/t-‘rkﬁ) . (34)
aeX(T)/ZB

A subset A of ®(V',T) is said to be S-convez if
a€N, a+BedV T)=a+B€A. (35)

For any submodule V of V’, V# denotes the unique sub-T-module of V' iso-
morphic to V as a Ker()-module and such that ®(V?,T) is S-convex. In other
words, on each line a + ZS N ®(V', T), one pushes the elements of ®(V,T) in
the direction 3 to get ®(V4,T).

Let w € W. The point wP/P is denoted by . Let V be a T-submodule
of Ty;G/P. Let 8 be a root of (G,T). We are interested in the action of the
unipotent one-parameter subgroup Up associated to 5 on w and V. Consider
the point © = lim, o, Ug(7)w. For any 7 € C, Ug(7)V is a linear subspace of
TUB(T)u-,G/P of the same dimension as V. Hence it is a point of a bundle in
Grassmannian over G/P. Counsider the limit in this bundle

7(V,B) == Tli_)ngo Ug(T)V. (36)

This limit 7(V, ) is a T-stable submodule of the T-module without multiplicity
TyG/P.
We can now state a Peterson’s result (see [CK03, Section 8]).

Lemma 10 The T-submodule sg7(V,3) of TyG/P is equal to V5.

Proof. The set {Us(7)w : 7 € C}U® is a T-stable curve isomorphic to P!. The
computation of 7(V, 3) lies in a bundle in Grassmannians over this line. This
computation can be made quite explicitly by trivializing this bundle on the two
T-stable open affine subsets of P*. (I

3.3 A lemma on T-varieties

The following result is used in this paper to characterize Schubert varieties in
terms of their tangent spaces among the irreducible T-stable subvarieties of
G/P.
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Lemma 11 Let V be a T-module. Let C be a strictly convez cone in X (T) @ Q.
Let 3 be a closed T-stable subvariety of V' such that

(i) ¥ is smooth at 0;
(i) ToS = DrecVy .
Then ¥ = @yecVy.

Proof. Since C is strictly convex and ®(V,T) is finite, there exist finitely many
one-parameter subgroups A1, ..., Ar of T such that

Vx € X(T) xe€C < Vi (\,x)>0.

For any i, there exists a T-stable neighborhood of 0 in ¥ such that any point
x in this neighborhood satisfies lim;—,g A;(t)x = 0. Consider the set W of v € V
such that lim;_, A;(t)v = 0, for any i. By the second condition, W is precisely
ToX. We just proved that TyX contains an open subset of . But these two
varieties are irreducible and of same dimension (since ¥ is assumed to be smooth
at 0). Hence ¥ = TpX. O

3.4 Schubert varieties

Let Y be a subvariety of G/P. Let G(X) denote the stabilizer of Y in G; it is
the set of g in G such that gy =Y. If G(Y) has an open orbit in Y then this
orbit is called the homogeneous locus of Y; otherwise, the homogeneous locus
of Y is defined to be empty. In other words, the homogeneous locus of Y is the
biggest open subset of ¥ homogeneous under a subgroup of Gj it is denoted by
Yhom_

Recall that X, = BwP/P. If Y = X,, (for some w € WT) then the group
G(X,) contains B: it is a standard parabolic subgroup of G. In particular, it
is characterized by a subset A,, of simple roots. Precisely we set

Ay ={aeA : P, X, =Xy}
Proposition 5 We have
XX(Z)—reg _ Xhom
w w N
Proof. Since the infinitesimal filtration is G-invariant, it is clear that XI)U( (2)—reg
is G(X,,)-stable and contains X2°™. Moreover Lemma 8 implies that Xoy
is open in X,,.
Assume that XI)U( — Xhom i nonempty. Choose an open B-orbit in
XX (#)mres _ Xhom and a T-fixed point © on it.
Obviously v is smaller than w for the Bruhat order. Since the Bruhat order

is generated by T-stable curves, there exists a positive root 3 such that sgv €
WP and v < sgv < w. Since B.% is dense in an irreducible component of

Xx(#)mres _ xhom g4 helongs to Xhom,

(Z)—reg

(Z)—reg
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Since sg0 is a T-fixed point in G(X,,).w, it is equal to uw for some u €
W(G(Xw)).
We claim that

sp € G(Xy)/T. (37)

Let us first explain how the claim leads to a contradiction. Since u belongs to
G(Xw)/T, the claim implies that sgu~tXhem = xhom Byt ¢ = sgu~1i and w
belongs to X2°™m. Hence © € X2°™ which is a contradiction.

Consider v = +w~tuB where the sign is chosen to make v negative. Since

u € G(X,)/T, Claim (37) is equivalent to sgu™'X,, = u='X,, or to s,sXy =
X or to

Sy (W Xy) = w X, (38)

Look these two varieties in a neighborhood of P/P. More precisely, consider
the unique affine open T-stable neighborhood 2 of P/P in G/P. Then  is
isomorphic as a T-variety to a T-module without multiplicity. Since the two
varieties of (38) are irreducible, it is sufficient to prove that

QNsy.(wtX,)=0nw 'X,. (39)

Since s, P/P € w™'X,, v € ®(w). In particular, w='X,, is U,-stable. But,
syP/P and P/P are smooth points in w™'X,,. Hence

lim U, (7)Tp/pw " Xy =Ty p/pw™" Xy

T—>00
Then Lemma 10 shows that

@(Tp/psyw_le,T) = S,Y(I)(Tswp/p’w_le,T)
=s5,P (limT_mo UV(T)Tp/pwile, T)
=& ((Tp/pw_le)_’Y,T) .

Since P/P is I-regular in s,w™! X,
Va € X(Z) dim(F7*(Tp/pw ' X)) = dim(F7*(Tp/pw™ ' X)) (40)

But v ¢ ®(P), hence vz is non trivial. Then, equality (40) implies that
O((Tp/pw'Xy) P, T) = ®(Tp pw ' Xy),T). Equality (39) follows and the
theorem is proved. ([l

4 Infinitesimal filtration and cohomology

4.1 Filtration of differential forms on a manifold

In this subsection, M is a smooth connected manifold of dimension d endowed
with an infinitesimal I'-filtration. The notion that allows to control the differ-
ential relatively to the filtration is the following one.
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Definition. An infinitesimal I'-filtration of M is said to be integrable if for any
« and $in I we have

[F7“TM, F7PTM] C F7**PTM. (41)

Example. Let L be an integrable distribution on M. We get an integrable
infinitesimal Z-filtration be setting

F7TM =TM Va € Z<o,
FATM =L,
FP*TM =0  Va € Z-o.

Example. Let L be any distribution on M. We get an integrable infinitesimal
Z-filtration be setting

FPTM =TM Va < —2,
FP=1TM = I,
F7eTM = 0 Ya € ZZQ.

Consider the sheaf QP of differential p-forms on M and the De Rham differ-
ential d,, : QP — QPT1. The De Rham cohomology group is

Ker d,(M)
HY . (M,R) := — 2

The exterior product

A P xQF — Qe
(w,w) +— wAW

induces a product A in cohomology since
dwAw) = (dw) ANw' + (=1)Pw A dw'.
In particular, H (M, R) := @&¢_,H% (M, R) is a graded algebra.

We now consider the I'-filtration on the sheaf (27 induces by the infinitesimal
Ifiltration.

Definition. Let f € T' and let U be an open subset of M. The subspace

FSBQP(U) of QP(U) is defined to be the set of forms w € QP(U) such that for
any ap,...,a, €I, for any z € U and for any & € F7*T, M, we have

a1+ FapAb = wi(br,. .., &) =0. (42)
A direct consequence of Proposition 4 is
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Proposition 6 (i) If By then FSPQP ¢ FS7QP.
(ii) Let B0 € T be such that F75TM = TM. If FS7QP # {0} then v=pSo.
(iii) We have F0QP = QP.

(iv) For B and ~ in T, we have FSBQP A FS1Q4 C FSBTyQrta,

The integrability is essential in the following result.

Proposition 7 Assume that the infinitesimal filtration is I'-integrable. Then
forany p el
dp(p#ﬂgp) c FSBQp+1,

Proof. Let U be an open subset of M and let w € FS#QP(U). Let x € U and
let & € F7*TM be defined in a neighborhood of z such that a4+ - -+ a1 ZB.
It remains to prove that

dp(w)iﬂ(glu e 7§p+1) == 0

Cartan’s formula implies

dp(w)x(gl,---,ngrl) = Zi igl 'w(gla"'aéiv'-'agptl) R
+Z1<g iwl?([éhéj]v&lv"'7§’i;"'7§j5"'7§p+1)-
Since [&;,&;] € F7*T% M and
(i taj)+ar+-+di+- o+ aj+ -+ apr1AB,

the term wx([gi,fj],gl, . ,gi, ce ,éj, . 7§p+1) is zero.
Consider now a term

gi'w(gla"'uéiw"agp-‘rl)' (43)

If a; &0 then & = 0 and the term (43) is zero. Assume now that «;<0. The
weight of &1,...,&, ..., §py1is 6 := Z?g o — . Since +a; # B and o; <0, we
have §43. Since w belongs to F~#QP(U), it follows that w(&;, . .. ,éi, v bpr1) =
0. O

4.2 Filtration of the cohomology

The T-filtration on M induces an increasing I'-filtration on the cohomology.
Indeed, Propositions 6 and 7 show that the De Rham complex is I'-filtered.
Namely, we set

Ker(d,) N F=PQP(M,R)
dp—1(~1(M,R)) N F<BQP(M,R)’

FSPHP(M,R) := (44)

Propositions 6 and 7 show the following one.
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Proposition 8 The sets FS? HP(M,R) are canonically identified with subspaces
of HP(M,R).

(i) If F7PoM = TM then F7PPo—BHP(M,R) is a I-filtration of HP(M,R).

(i) The filtration respects the structure of algebra. Namely, for § and v in T,
we have

FSPHP(M,R) A FSYHY(M,R) C FSPHY HPTI(M, R).

Remark. The I'-filtration is defined at the level of the de Rham complex and
not only at the level of the cohomology. In particular, it induces a spectral se-
quence which should be study to understand the relations between the ordinary
and the Belkale-Kumar cohomologies. Here we only study the Belkale-Kumar
product.

Consider now the (I' x Z)-graded algebra associated to this I'-filtration of
the Z-graded (by degree) algebra H*(M,R) by setting

FSBHP(M,R)
> s FSVHP(M,R)

GrP HP (M, R) := (45)

and

Gr*H (MR):= @ Gr’H(M,R). (46)
BET, peEN

Then Gr* H*(M,R) is a ring graded by T’ x Z.
Now, we observe the following easy functoriality result.

Lemma 12 Let M and N be two smooth manifolds endowed with integrable
infinitesimal T-filtrations. Let ¢ M — N a smooth map such that

YVael  T¢(FZ*TM)cC FZ°TN.
Then the pullback ¢* : H*(N,R) — H*(M,R) respects the T'-filtration. In
particular, it induces a T-graded morphism Gr¢* : Gr H*(N,R) — Gr H*(M,R).
4.3 Cohomology with complex coefficients

Recall that M is a connected manifold. Consider the cohomology group H* (M, C)
with complex coefficients and consider the following complex vector bundle on
M

TM :=TM &g C.

A complex infinitesimal T -filtration of M is a family of complex subbundles

FS8TCM c TCM,
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indexed by 8 € T satisfying the three assertions of Definition 2.2. A complex
infinitesimal I'-filtration is said to be I'-integrable if for any 8 and ~ in I', we
have

[FSBTCM, FSYTC M) ¢ FRPHTCM. (47)

A complex infinitesimal integrable I'-filtration induces a filtration of the De
Rham complex and of the groups H? (M, C).

Example. Let M be an holomorphic manifold. Let J denote the complex
structure on the tangent bundle TM. Since J? = —Id, its eigenvalues acting on
TM ® C are ++/—1. Let T*9M (resp. T%'M) denote the complex subbundle
of TM @ C associated to the eigenvalue v/—1 (resp. —v/—1). There is a natural
C-linear isomorphism ¢*° : TM — T™OM. Tt is well known that T"9M is an
integrable distribution in 7CM. Then we get a complex infinitesimal integrable
Z-filtration by setting

FPeTCM =TCM  Ya € Zeo,
FAOTCM = THOM
F7eTCM =0, Va € Zo.

The Z-filtration of H? (M, C) is called the Hodge filtration of M (see for example
[Voi07]).

4.4 The case of a smooth complex variety

Let M be a smooth complex irreducible variety endowed with an algebraic
I-filtration. Assume that this filtration is integrable and comes from a decom-
position (recall the definition from Section 2.2). Set I' := I x Z endowed with
the order (8,n)=(v, m) if and only if 8=~ and n > m.

Define a complex I-filtration on T€M by setting for any 8 € T,

FFBa)TCrr — TCpf Va € Z<o,
FrBOTCNr = LO(FFBT M),
FF@Ba)TCrr — 0, Va € Zo.

Integration along subvarieties. Let N be an irreducible subvariety of M.
Denote by n the dimension of M and by d that of N. By Lemma 4, the
dimension vector (fd?(T,N))ger does not depend on z € N general. This
general value of the dimension vector is by definition the f-dimension vector of
N and is denoted by fd?(N). For any z in N, the I-filtration of T, N comes
from a decomposition by Lemma 5. In particular, Lemma 4 shows that the
g-dimensional vector of T, /N does not depend on x in N general. This remark
allows to define the g-dimension vector of N. Then the weight p(N) € I of N
is defined by the formula
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p(N) = 3 gd(N)5. (48)

Ber

(8,0)

Consider the extended notions to I': gd ~ (N) = gd®O(T,N @ C) = gd?(N),
(0,-1) —~(B,a)

gd (N)=dand gd " (N) =0 otherwise. Note that p(N) = (p(N), —d).

Consider now the linear map

024(M,C) — C
w — [y Wi

The following lemma relies the filtration and the integration.

Lemma 13 Let 8 € T and let e € Z such that (B,e)#p(N). Ifw € FSBQ2d(M, C)

then
N

Proof. Let x € N be a general point. By Lemma 5, the I'-filtration on 7T, N
comes from a decomposition. Then there exists a basis (£1,...,&q) of T, N such
that for any B € T, the set of & which belong to F##T,N spans F7PT,N.
Such a basis exists since by Lemma 5, the I'-filtration on T, N comes from a
decomposition. Let a; be the maximal element of I'" such that & belongs to
F7eT N,

Consider the basis (119 (&1), ..., 180 (&), OV (&), ..., OV (&y)) of T,N®
C. Since x is any general point on N, it is sufficient to prove that

w(MO&), P&, OV (&), 0D (&) = 0.

But ((10)(&) € FF@OTCN and OV (¢;) € F7O~DTCN. Hence the weight
of (L(LO) (51)5 R L(LO) (gd)v L(Oyl) (51)5 R L(Oﬁl)(gd)) is E?:l(aiv 0) + d(oa _1> =
p(N). The lemma follows. O

The restriction of the map w — f N win to the closed 2d-forms is zero on
the exact forms and induces a linear map

/ : H*(M,C) — C.
N

Consider now the restriction of this map to F<?(V) H24 (M, C). By Lemma 13,
this restriction induces a linear map

/ . Grr™M H% (M, C) — C.
N

Poincaré pairing. Assume that M is compact and recall that it is orientable
since it is holomorphic. Let p be an integer such that 0 < p < 2d. The
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integration allows to define a paring
HP(M,C) x H*~P(M,C) — C
([wl]v[WQ]) — wal N wa.
By Poincaré duality, this bilinear form is non degenerated. In particular, H? (M, C)

and H2?7P (M, C) have the same dimension.
Let & € T'. Consider the following restriction of the bilinear form (49):

(49)

FS&HP(M,C) x FSPM)—ag2d=p(\r C) — C (50)
([wi]; [wa]) — [y w1 Aws.
Since :
a=p(M) = FS4Q2(M) = Q>*(M), and
ap(M) = FIEQ2(M) =0,
Lemma 13 shows that
&+ Byp(M) = FSYHP(M,C) A FSBH2-P(M, C) = {0}. (51)
In particular, the pairing (50) passes to the quotient and induces a pairing
GrHP(M,C) x GrPM-ay2d-r(pr C) —s C (52)
(Jw1], [wa]) — wal N wa.

Definition. The I-filtration of H*(M, C) is said to be compatible with Poincaré
duality if for any integer 0 < p < 2d and for any & € T', the pairing (52) is non
degenerate.

Lemma 14 The T-filtration of H* (M, C) is compatible with Poincaré duality if
and only if for any nonnegative integer p and any & € T', we have

dim(Gr® HP(M, C)) = dim(Gr"™M) =% H24-P(), C)) (53)

Proof. If the [-filtration of H*(M, C) is compatible with Poincaré duality we
obviously have the equalities of dimensions.

Assume now that (53) hold. In a basis adapted to the filtration, impli-
cation (51) implies that the matrix A of the pairing (49) is upper triangular.
Moreover, the matrices (in the induced basis) of the pairings (52) are the diag-
onal blocs of A. But equalities (53) imply that these blocs are square. Since A
is invertible, it follows that any bloc is invertible. 0

Definition. Let NV be an irreducible subvariety of a compact smooth irreducible
complex variety M endowed with an integrable infinitesimal I'-filtration coming
from a decomposition. Assume that the D-filtration is compatible with Poincaré
duality. Define [N]o, € GrPPMD=—PN) g2=d) (A1 C)) to satisfy the following

formula
J = [ Moy Al 54)
for any [w] € Gr?™) H* (M, C).

On can refer to Proposition 11 for a more concerte characterization of [N]g,
and in particular its relation with [N], in the case when M = G/P.
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5 Isomorphism with the Belkale-Kumar product

5.1 The Belkale-Kumar product
In this section, we recall the Belkale-Kumar notion of Levi-movability (see [BK06]).

The cycle class of the Schubert variety X,, in H*(G/P, C) is denoted by o,
and it is called a Schubert class. The degree of o, is 2(dim G/P — l(w), where
l(w) = §®(w) is the length of w. The Schubert classes form a basis of the
cohomology of G/ P:

H*(G/P,C)= @D Cou. (55)

weWw?r

The Poincaré dual of o, is denoted by o,. Note that o, is the class of the
point. Let oy, 0y, 0y be three Schubert classes (with u,v,w € WF). If there
exists an integer d such that o,,.0,.0,, = do. then we set cyyw = d; We set cypw =
0 otherwise. These coefficients are the (symmetrized) structure coeflicients of
the cup product on H*(G/P,C) in the Schubert basis in the following sense:

Ou-Oy = Z Cuvw 0o
weWr
and Cuvw = Cyuw = Cywv-
Consider the tangent space T, of the orbit u~!BuP/P at the point P/P;
and, similarly consider T, and T,,. Using the transversality theorem of Kleiman,

Belkale and Kumar showed in [BK06, Proposition 2| the following important
lemma.

Lemma 15 The coefficient Cyqy 15 nonzero if and only if there exist py, py, Puw €
P such that the natural map

_, Te(G/P) S Tr(G/P)  Tr(G/P)

Tr(G/P) pu.T, Do T Puw T

is an isomorphism.
Then Belkale-Kumar defined Levi-movability.

Definition. The triple (oy, 0y, 0y) is said to be Levi-movable if there exist
lu, ly,ly € L such that the natural map

| Te(G/P) _ Te(G/P) _ Te(G/P)

Tr(G/P) 1.T 1,T, luT,

is an isomorphism.
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Belkale-Kumar set

P _ { Cuvw i (0w, O, 0w) is Levi — movable;

uvw 0 otherwise.

They defined on the group H*(G/P,C) a bilinear product ®g by the formula

_ ®o -V
OuOo0y = E Coros T+
weWF

Theorem 2 (Belkale-Kumar 2006) The product ®g is commutative, asso-
ciative and satisfies Poincaré duality.

[RR11, Proposition 2.4] gives an equivalent characterization of Levi-movability.
It can be formulated as follows.

Proposition 9 Let u, v, w € W such that cyvw # 0. Then (0u, 0y, 0u) 48
Levi-movable if and only if

5.2 The statements

The first aim of this section is to prove (see Section 5.4.10) the following result
of compatibility between the basis of Schubert classes and the I'-filtration on
H*(G/P,C).

Proposition 10 For any B e T and for any integer p, the linear subspace
FSAHP(G/P,C) is spanned by the Schubert classes it contains.

More precisely, FSPHP(G/P,C) is spanned by the Schubert classes oyv
where w € WF satisfies (p(Xw), —1(w))<3.

For any w € WP denote by av the class of g,v € FS(P(Xw).~Lw) gUW)(G/p,C)
in Gr(P(Xw),=lw) glw)(G/P C). Proposition 10 implies that (F5v)pewr is a
basis of Gr H*(G/P,C). Consider now the obvious linear isomorphism

v . H'(G/P,C) — GrH"(G/P,C)
Owv — Twv for any w € WP.

Theorem 3 The linear isomorphism ¥ from the algebra (H*(G/P,C), ®¢) onto
the algebra GrH*(G/P,C) is an isomorphism of algebras.

The theorem is proved in Section 5.5 after some preparation. The first
consequence concerns Poincaré duality (see Section 5.4.10).

Corollary 1 The (X (Z)xZ)-filtration of H*(G/ P, C) is compatible with Poincaré
duality.
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This corollary allows to define the graded Schubert classes by setting, for
any w € WP,

020 = [Xy]o,- (56)

Finally, we get, by applying Proposition 11 to Y = X, the following result
of compatibility.

Lemma 16 For any w € W, we have

V(o) = o0,

w

5.3 An upper bound for dim(F~*HP(G/P,C))

For any w € W, as a consequence of the relation @~ = (¢~ Nw 1dT)U (P~ N
wt®7), we have (see |[Kum02, 1.3.22.3|)

Z a=wtp—p (57)

acEdP—Nuw— 1o+

Assume that w € WF. Since P/P is X(T')-regular and T acts on Tp,pw ™' X,
without multiplicities and with weights ®~ Nw™'®*, we have

p(Xw) = p(w™ ' Xy) = < > a) =(w™p—p),- (58)
|z

acEdP—Nuw— 1o+

In particular

p(G/P)=2(pL — p)|z = —2p|z, (59)
since py, is trivial on Z. Hence
p(G/P) = p(Xuw) = (=p—w™'p) , (60)

Lemma 17 For any w € W, we have

p(G/P) — p(Xw) = p(Xuv).
Proof. Remark that

(@) "'p)iz = (wh w™wop) 2z = —wf (W™l p)jz = —(w™'p) 2,

since wg’ belongs to L and acts trivially on Z. The lemma follows. g

Lemma 18 Letn denote the dimension of G/P. The dimension of F<8 H*"=9(G/P,C)
is less or equal to the number of w € WF such that p(G/P) — p(X.w)<B and
l(w) =d.
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Proof. For each w € W¥ such that p(G/P) — p(X)#&B and I(w) = d, consider
the linear form

/ :H2=d(q/P,C) — C.
X,V

By Lemmas 17 and 13, this linear form is zero on F=% H2"~9(G/P,C). But
by Poincaré duality these linear forms are linearly independent. This implies
that the codimension of FX# H2"~4(G/P,C) in H2"~9(G/P,C) is at least the
number of w € W¥ such that p(G/P) — p(X,)#&B and l[(w) = d. The lemma
follows. O

5.4 Kostant’s harmonic forms
5.4.1 The role of Kostant’s harmonic forms in this paper

Let w in WP, In 1963, B. Kostant constructed an explicit C-valued closed
differential form w,, on G/P such that the associated cohomology class [w,] is
equal to o, up to a scalar multiplication. Kostant’s form w,, is used here to
localize the Schubert class relatively to the filtration.

Lemma 19 The Schubert class oy belongs to FS(P(Xw).—Lw) g{w)(q/p C).

Before proving Lemma 19 in Section 5.4.10, we recall Kostant’s construction.

5.4.2 Restriction to K-invariant forms

Let K be a maximal compact subgroup of G such that T'N K is a maximal torus
of K. Then K is a connected compact Lie group.
Consider the subcomplex of K-invariant forms:

d, : Q*(G/P,C)* — Qrtl(G/P,C)%,

and its cohomology H},x(G/P,C)X. The identity d,_1(QP~1(G/P,C)K) =
dp—1(QP~1(G/P,C)) N QP(G/P,C)E allows to define a morphism

Hpr(G/P,C)F — Hpp(G/P,C),

which is an isomorphism.
Since K acts transitively on G/P, the restriction map to the tangent space
at P/P provides a linear isomorphism

p KNL
Qr(G/P,C)K — (/\HomR(g/p,C)> . (61)

Let £ denote the Lie algebra of K. This compact form € determines a real
structure [J* on g. More precisely, [1* is a C-antilinear endomorphism of g such
that £ is the set of £ € g such that £&* = —¢€.

Consider now the complex dual (g/[)* of the complex vector space g/[. Since
[ is stable by [0*, g/l is endowed with a real structure still denoted by (0*. Then
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(g/0)* is also endowed with a real structure by setting ¢* = (0*), for any
¢ € (g/1)*. Define a morphism

6 : Homg(g/p,C) — (g/n)*

where ¢ is C-linear and 1 is C-antilinear. One checks that 6 is a C-linear
isomorphism and that it commutes with the real structure and the actions of
K N L. Note that L also acts on (g/l). Since K N L is Zariski dense in L, we
have

KNL

(/\p(g/[)*) = (/\p(g/[)*)L. (62)

Finally we get an isomorphism
P DL
@ (G/PC)" — (N'@/n) (63)

5.4.3 The Lie algebra ¢

Let u and u™ be the algebras of the unipotent radicals of P and its opposite
parabolic subgroup P~. Consider the sum

t=u Qu (64)

endowed with a Lie algebra structure [-, ], defined by keeping the brackets on
u~ and u unchanged and by setting [u~,u], = 0. The L-equivariant linear
isomorphism v ~ g/l and its transpose (g/l)* ~ t* induce isomorphisms

~ (/\'(u*)* ® /\'u*)L. (65)

The term A®(u™)* corresponds to holomorphic forms on G/P and the term
A\° u* corresponds to antiholomorphic forms.

Combining [0* and the Killing form (-, ) one obtains an Hermitian form {, -}
on g. Explicitly,

Q*(G/P,C)X ~ (Homg(g/p,C))" ~ (/\'t*)L

{57 77} = _(57 77*)7

for any £, n € g. Denote by {-, -}, its restriction to t. The decomposition
u~ @ u = v is orthogonal for {-,-},. Consider now the graded exterior algebra
A*t* = @, APr* and extend the bilinear form {-, -}, on A*t*. The decomposition
t=u" ® u induces a N2-grading A®t* = D(p,qenz AP?t* by setting

AP = AP(u7)* @ AT(u)*.

Moreover, the sum @, yen2 A7 t* is orthogonal for {-,-}. .
Let b € End(A®t*) be the Chevalley-Eilenberg coboundary operator of the
Lie algebra t. It has degree 41, more precisely

b(APIe*) C APThAaEs g AP,
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Set b = 10 + %! according to this decomposition. Let € End(A®t) denote
the Chevalley-Eilenberg boundary operator. Using the Killing form, we identify
v and v* and transport 0 to an operation 9* € End(A®t*) of degree —1. Decom-
pose 9* = 9710 4+ 9%~1 according to the decomposition AP~1dr* @ API~ 1t
Set

L=0"0b+bod". (66)

[Kos63, Proposition 4.2] gives an alternative expression of L:
1
L= 5(80’71 o bVt 4 %1 0 9%, (67)

5.4.4 The (X(Z) x Z)-filtration of A®t*
Consider the action of Z x C* on t given by
(z,7).(§ + &) = (12£7,8), VeeZ, 1e€C* & eu, e (68)

Then the group Z x C* acts on A®t* and induces a f‘-decomposition

At = @ (A7) 5. (69)

BeX(Z)xZ

Note that the weights of Z acting on (u™)* are the weights of Z acting on u; in
particular, they are positive for the order »=. As a consequence, we have

(A*e)5 # {0} = B0, (70)
Set
FSB(A*Y) = @ 5(A°t")a (71)
Consider now, like in the formula (65), the diagonal action of L on t:
L +& =1 +1¢, VieL & eu,£cu

Since Z is contained in the center of L; the action (68) of Z x C* and the above
action of L commute. In particular the decomposition (69) is L-stable. Set
C = (A*t*)L and Cz = CN(A*t")z. The (Z x C*)-module C decomposes as
follows

c=c; (72)

Bel
The associated filtration of C' is:

FsBC = F3B(pav)nC.
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5.4.5 Action of L on A*(u™)*
We now recall results of Kostant in [Kos61] on the action of T on A®(u™)*.

Theorem 4 (i) The set of vertices of the convex hull of the weights of T
acting on \*(u™)* is the set of p—wtp where w € WF.
These weights are multiplicity free and the eigenline corresponding to p —
w™lp is generated by

w ::¢a1/\"'/\¢ap7

where {ay,...,ap} = PTNw 1O and ¢po, € (u)* is a vector of weight
Q.

(ii) For any w € W the vector ¢y, is an highest weight vector for L. Denote
by M,, the simple L-module generated by ¢,,.

5.4.6 A first differential form
We are now ready to define a first K-invariant differential form on G/P. Set
hw =1dy € My, @ M C (AP(u™)* @ APu) " (73)

where p is the length of w, that is s the codimension of X,,v. Since Z is central
in L, Z acts with weight (p —w™'p)|z on M,. In particular,

hw € C((p—w-1p),5.~p)- (74)

If G/P is cominuscule then h,, corresponds by the isomorphism (65) to the
wanted closed differential form representing o,,. In general, more work is useful.

5.4.7 An Hermitian product on ¢

Recall that the Hermitian product {-, -}, on v induces Hermitian inner products
on A®t and A®t* still denoted by {-, -}+.

Lemma 20 For any nonnegative integer p, the (X (Z) x Z)-decomposition (72)
is {-, - }c-orthogonal.

Proof. It is sufficient to prove that the decomposition
t=ud @ uy (75)
acX(2)

is {-, -}c-orthogonal. Since u* = u~ and the Killing form vanishes on u~, u and
u~ are {-, }-orthogonal. Let now fix { € uy and n € ug, with 3 # g’ € X(Z).
Consider the adjoint action of Z on g, the induced one on End(g) and the
corresponding decomposition

End(g) = @aex(z) End(g)a-

Note that for any A € End(g)o with o # 0, we have tr(A) = 0. The endomor-
phism Ad(n*) belongs to End(g)_g. It follows that Ad(n*) o Ad(€) belongs to
Bnd(g)s_p and that {€,7) = —(€,1°) = — tr(Ad(1*) o Ad(€)) = 0. 0
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5.4.8 Operators on A®*(t*)
Recall, from the formula (66), the definition of the operator £ € End(A®t*).

Lemma 21 The operator L stabilizes C, ) for any integer p and any a €
X(2).

Proof. By [Kos63, Proposition 3.4], 0%!(C(q ) is contained in Ciq pi1y. By
[Kos63, formula 3.5.3], 0%~ 1(C(qa,p+1)) is contained in C(, ). We deduce that
(0271 0 b%1)(Cla,p) is contained in C, . Similarly, (b%' 0 8%71)(Ciq p)) is
contained in C(, ). We conclude using the formula (67). O

Note that £ is an Hermitian operator. In particular, we have a {-, -}
orthogonal decomposition Ker £ @& Im £ = A®t*. Consider the quasiinverse Lg
of L: Ly is the Hermitian endomorphism of A®t* such that Ker £y = Ker £ and

Lojtme = (Lyme) "

Let m : v — End(A°®t*) be induced by the coadjoint action. Let f; be
eigenvectors in u~ for the action of Z that form a basis of u™. Let g; be the

basis of u defined by the conditions (fi, g;) = 5{ (the Kronecker symbol). Set

E:=2 Zw(gi) om(f;) € End(A®t"). (76)

Kostant defined a third operator
R := —Lyo& € End(A®t"), (77)
he proved that R is nilpotent and he defined
s = (Id =R) " hw) = hy + R(hy) + R*(huy) + -+ . (78)

Here, we need the following improvement of [Kos63, Lemma 4.6] that proves the
nilpotency of R.

Lemma 22 For any integer p and o € X(Z), we have

R(Cap) € P Com-

B=a

Proof. Lemma 21 asserts that £ stabilizes the (X (Z) x Z)-decomposition of C'.
Since this decomposition is {-, - }e-orthogonal by Lemma 20, this implies that
Lo also stabilizes the I'-decomposition of C'. By the formula (77), it remains to

prove that £(C,, ) C EB[B_W C(3,p)-

But each 7(f;) vanishes on A®u* and each 7(g;) respects the degree. It follows
that £(Clap)) C Bpex(z) Cipp)- But m(g;) vanishes on A*(u~)*. Moreover,
fi belongs to u™ and has a weight v<0. It follows that 7(f;)(A®(u™)j3) C
A*(u™)5_,. The claim follows. O
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5.4.9 Kostant’s theorem
Theorem 5 ([Kos63] ) Let w € WE. The element s, € \°t* defined by (78)

is L-invariant. In particular, s, corresponds by the isomorphism (65) to a
K -invariant form w,, on G/P.

Then the form w., is closed and its class [wy] in Hpr(G/P,C) is equal to
the Schubert class o, up to a positive real scalar.

w?

5.4.10 Application

We can now prove Lemma 19.

Proof.[of Lemma 19] By Theorem 5, it is sufficient to prove that w,, belongs
to FSAWQUw)(G/P,C). But w, and the filtration are K-invariant on the K-
homogeneous space G/P. Hence it is sufficient to prove that s, belongs to
F=Pw)C. This is a consequence of the property (74) and Lemma 22. ([

Proof.[of Proposition 10]~Let B eT and let p be an integer such that 0 < p <
dim(G/P). Consider FSPH?(G/P,C). On one hand, Lemma 18 shows that
the dimension of F<9 HP(G/P,C) is not more than the cardinality of the set

W(B,p) = {weW" : §(G/P) — p(Xw)<p and l(w) = n — p}.

On the other hand, Lemma 19 shows that F'<7 HP(G/P,C) contains the classes
o,V for w in the set

W'(B,p) = {we WP : 5(X,)<8 and I(w) = p}.

But Lemma 17 implies that the Poincaré duality w — w" induces a bijection
between W (3, p) and W’ (3, p). Since the family (Uwv)wGW’(B p) 18 linearly in-
dependant the proposition follows. ([l

Proof.[of Corollary 1] The corollary is a direct consequence of Lemma 14 and
the above proof of Proposition 10. O

5.5 Proof of Theorem 3

Let v and v be elements of W¥. Consider the following product in the ordinary
cohomology ring H*(G/P,C)

_ w
OOy = E CyvOw-

weWr

By Lemma 19 and Lemma 17, o, belongs to F<P(G/P)=p(Xu) H(wows)—1(w) (G/P,C).
Similarly, o, belongs to F=P(G/P)=p(Xo) Hl(w‘”"f)_l(”)(G/P7 C). Now Proposi-
tion 8 shows that

= F=28(G/P)=p(Xu)—p(Xo) HQZ(wowf)*l(U)*l(v) (G/P,C).
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By Proposition 10, this means that
cuv 70 = p(G/P) = p(Xuw) S25(G/P) — p(Xu) = p(Xu), (79
= p(Xu) +p(Xo) < p(Xw) + p(G/P). (80)
Proposition 10 implies also that

Ty = > ey O (81)

wew?
A(Xu)+p(Xy)=p(Xw)+5(G/P)

On the other hand, Proposition 9 shows that
Ou®00y = Z Cof T (82)

wew?
9d(Xu)+gd(Xy)=gd(Xw)+gd(G/P)

Comparing the identities (81) and (82), it remains to prove, under the assump-
tion ¢y, # 0, that the equivalence

p(Xu)+p(Xo) = p(Xw) +5(G/P) <= gd(Xy)+gd(X,) = gd(Xy)+gd(G/P)

holds.

The implication “<” is an immediate consequence of the definition (19)
of p(-). Conversely, assume that p(X,) + p(X,) = p(Xw) + p(G/P). Since
c?, # 0, the Belkale-Kumar numerical criterion of Levi-movability (see [BKO06,
Theorem 15]) implies that o, ©g0, ®gowv = ¢, [pt]. In particular, Proposition 9
implies that gd(X,,) + gd(X,) = gd(Xy) + 9gd(G/P). The theorem is proved.

5.6 The Belkale-Kumar fundamental class

Recall from Section 4.4 the definition of the Belkale-Kumar fundamental class
of any subvariety of G/P. We can now give a simple characterization of this
class using the notion of X (Z)-dimension.

Proposition 11 Let Y be an irreducible subvariety of G/P of dimension d.
Consider the expansion of its fundamental class in the Schubert basis

Y= > duow.
weWP
Then the expansion of its ®g-fundamental class in the Schubert basis is
[Y]G)o = Z dwago'
wew

p(Xw)=p(Y)

Proof. It remains to prove that for any [w] € GrY) H*¢(G/P,C),

[e=tloe ¥ duou).

wew?
p(Xw)=p(Y)
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Since the two members of the equality depend linearly on [w], it is sufficient to
prove it for [w] = o,v, for any u € WF such that p(X,) = p(Y) and I(u) = d.
By ordinary Poincaré duality, this case is equivalent to the following equality

ouv ( Z dyOw) = ouv o Z dyOw)-

wew wew
l(w)=n—d p(Xw)=p(Y)

Since the only product o,v.o,, that is nonzero in the above formula is o,v.o,
the proposition follows. O

6 Intersecting Schubert varieties

Given u,v € WF such that vV < u, we construct in this section a familly of
varieties containing both the Richardson variety X, NwyX, (up to translation)
and the variety 2. We prove (see Proposition 13) that Conjecture 4 holds for
30 if and only if it holds for all these varieties. To end this section, we show
that Conjecture 4 is equivalent to a formula using the Kostant harmonic forms
that looks like a Fubini formula.

6.1 Products on H*(G/P,C) and Bruhat orders
The Bruhat order on W is defined by

u<v <— X, CX,.

This order is generated by u < v if [(v) = l(u) 41 and v = s,u for some positive
root . The weak Bruhat order on W is generated by the relation u < v if
I(v) =l(u)+1 and v = squ for some simple root . The relation between these
two orders is

u<v = u <. (83)

A useful characterization of the weak Bruhat order is given by the following
result (see [Bou68]).

Lemma 23 Let u and v in WP. Then u < v if and only if ®(u) is contained
in ®(v).

The following relation between the cup product and the Bruhat order is well
known
w0y #0 = v <u.

We have the following relation between the Belkale-Kumar product and the
weak Bruhat order.

Lemma 24 Let u and v in WF. If 0,000, # 0 then vV < u.
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Proof. By assumption, there exists w € W such that (u,v,w) is Levi-movable
and I(u) + I(v) + l(w) = l(wow{’). Hence, for (I3, l2, I3) in a nonempty open
subset of L3:

LT, NiT,NIsT, = {0}.

In particular, [, T, + 2T, = Tp,pG/P. Since AL.(B,wf'By) is open in L2,
there exist [ € L, by,by € By, such that [b:T, + lw{;bgTv = Tp/pG/P. But T,
and T, are Bp-stable and Tp,pG/P is L-stable, hence

T.+w{T, =TppG/P.

It follows that ®(u) U wl ®(v) = ®(G/P). But ®(v") = ®(G/P) — wl®(v).
Hence ®(v") C ®(u) and v < . O

Remark. The converse of the implication of Lemma 24 does not hold. Indeed
consider SL3(C) with its usual maximal torus and Borel subgroup B. Denote
the two simple reflections of W by s; and se. Then og,5,000s,5, = 0 while
(s281)Y = 89 < 51509.

6.2 Like Richardson’s varieties

Let u,v € WT. The Richardson variety X? is defined by
X, =X, NwoX,.

It is well known that X" is irreducible, normal and satisfies [X?] = 0,.0,. In
particular, X is empty if and only if vV < u.

Assume now that vV < u. Fix y € W such that vV <y < u. Consider the
intersection

I’(y) =y ' X, nwtv1.X,. (84)

The first example I2(vY) = (v¥)"1 X7 is just a translated Richardson variety.

By the relation (83), the point yP/P belongs to X,. It follows that P/P
belongs to y~!1X,. Since vP/P belongs to X,,, P/P belongs to wiv=1.X,. It
follows that

P/P e I(y). (85)

The following lemma shows that the variety I7(y) contains a translated
Richardson variety.

Lemma 25 Let u, v, and y in WP such that v¥ <y <u. Then I¥ (y) is
contained in IY(y).

Proof. It remains to prove that y > X, Nwd (y¥)~1.X,v is contained in y =1 X,,N
whv™1.X,. It is sufficient to prove that (y¥)~'.X,v is contained in v='.X,.
But (yV)"1.X,v = ((yV)~"'ByY).P/P and v~ '.X,, = (v=1Bv).P/P. Hence it is

36



sufficient to prove that ®(g/p, T)N(y") 1@ is contained in ®(g/p, T)Nv 1o+,
But vV < y and hence y¥ < v. Lemma 23 allows to conclude. O

The fact that X, and X, are B-stable implies that the group HY(y) :=
y !By N wlv 1Bvwl acts on I¥(y). Set y' = y(v¥)~! in such a way that
y = y'vY. Note that ywf v~ = y'wy and that
Hy(y) = ()" (y"'By' n B )v". (86)
The group H}(y) is a connected subgroup of G, containing 7' and acting on
I¥(y). Consider now the group U(y') =y~ Uy’ NU".
Let G/P = B~ P/P denote the open T-stable affine cell containing P/P.

Set IV (y) = G/P N I%(y); it is an open T-stable affine neighborhood of P/P in
I?(y). The following statement describes the geometry of this neighborhood.

Theorem 6 Let u, v, and y in W' such that vV <y <u. Then the following
morphism

v U(y’)xiz (y) — 1:(y)
(u, ) — (V) tuwY.z

is an isomorphism.

Proof. The weights of T acting on the Lie algebra of the group U(y) = U~ N
y Uy are ®(y) = @~ Ny~ 1®*+. The weights of T’ acting on the tangent space
at the point P/ P of the variety w{ (yV) "1 X,v are ®(g/p,T)Ny~ 1®~. But G/P
is isomorphic as a T-variety to the affine space g/p. It follows that the map

U(y)X[w(f(yV)‘lemG;P] — G;P (87)
(u, x) —  ux

is an isomorphism. The variety y =X, is stable by y~ !By and so by U(y). It
follows that the map

Uly) x [wf (yV) ' X,vNG/PNy~1X,] — G/Pny'X,
(u, x) — uzx

is an isomorphism.
Since vV < y and y = y'vY, the set ®(y) is the disjoint union of ®(v¥) and
(vV).®(y') (see for example [Bou02|). Then the map
Uly)xU@Y) — Uly)
(', ) — (V) vV
is an isomorphism. Note that in the above expression we have fixed represen-
tative (still denoted by v“) of vV in the normalizer of the torus 7. Composing

these isomorphisms gives the following one:

Uly) xUWY) x I8 (y) — G/PAy~'X,

X
(v, u,x) — () MoV
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Since ®(y’) is contained in (vV)~'®~, and wfv1X, = ((vW)"1B~vV).P/P,
the variety w{ v~!X, is stable under the action of U(y’). Hence

-
—~
<
—

X
—~

G
—

<

<
~
~
<
—~

y) Nwiv ' X,| — I4(y)

(U@") - 18" () nwbv' X, = 1% (y).

° \4
Let u € U(vY) and x € I¥ (y) such that ux belongs to wfv=1X,. It is sufficient
to prove that w = e. Replacing y¥ by v in the morphism (87), we get an
isomorphism

©: UWY)x[wbviXx,nG/P] — G/P
(v, z") —  u'z.

One can easily check that z belongs to wlv=1X, N G/P and that ©(u, )
O (e, ux). Now, the injectivity of © implies that u = e.

ol

An important consequence of Theorem 6 for our purpose is the following
statement.

Corollary 2 The variety I’ (y) is normal at the point P/P. In particular, there
exists an unique irreducible component XU (y) of I (y) which contains P/P.

Proof. The corollary follows from the theorem and the fact that the Richardson
varieties are irreducible and normal (see [KWY13] for a short proof). O

If y = v¥ then Theorem 6 is trivial. In the opposite situation when y = u it
implies the following result.

Corollary 3 Let u and v in WP such that v¥ < u. The orbit H'(u).P/P is
open in I?(u). In other words, XU (u) is the closure of HY(u).P/P.

Proof. If y = u then the translated Richardson variety I¥ (y) = I* (u) is
reduced to the point P/P. The corollary follows immediately. (I

6.3 A conjecture

Here comes our main conjecture.
Conjecture 4 Let u,v € WP such that v < u. Then

[Zn(W]e, = 000"
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Some observations on this conjecture are collected in the following proposi-
tions.

Proposition 12 Ezpand [Z(u)|e, and ou©ooy in the Schubert basis:
By (w)]oy =X pewr di,00°, and
590000 = Ty E05
Then, for any w € W¥,

(i) ¢¥, > dv,;

(it) é¢¢, #0 < d¥, #0.

Proof. Write [E7(u)] = 3 cwr €iy0w and 0404 = D cyyp Cioy 0w in ordinary
cohomology. Since X% (u) is an irreducible component of the intersection I”(u)
and that this intersection is proper along this component, the inequality

Cuv 2 €uy (83)

uv —

holds for any w € W¥. Consider now a coefficient d¥, for some fixed w € WF. If
dy¥, = 0 then the first assertion of the proposition is obvious. Assume d, # 0.
By Proposition 11, d¥, = el . Comparing the inequality (88) and the first
assertion, one observes that it is sufficient to prove that ¢V, = c%, ; that is that
&, # 0.

Since d?, # 0, Proposition 11 implies that p(X,,) = p(X¥(u)). Since P/P
belongs to the open HY(u)-orbit in X% (u) and is X (Z)-regular. In particular

p(Zh(w) = > dim[(Tp/pEh ()],
vEX(2)

where (T'p,pX, (u)) is the weight space of weight ~y of the Z-module Tp, pX} (u).
But Tp/pX;, (u) is the transverse intersection of Tp/pu_lXu and Tp/pw(I)DU_IXU.
It follows that p(X3(u)) = p(u™'Xu) + p(wfv™'Xy) = p(Xu) + p(X,). Finally
p(Xw) = p(Xy) + p(X,) and Proposition 11 shows that ¢, = ¢,.

Assuming that d, # 0, the first assertion implies that ¢, # 0. Assume
conversely that ¢, # 0 in other words that (u,v,w") is Levi-movable. Arguing
like in the proof of Lemma 24, one can check that there exists [ € L such that
w1t X, whv1X, and I(w") !X, intersect transversally at P/P. It follows
immediately that 32 (u) and I(w") ™! X,,v intersect transversally at P/P. Hence
e, # 0.

It remains to prove that e, = d¥,. The condition ¢¥, # 0 in the X (Z)-
graded algebra GrH"(G/P,C) implies that p(X,) = p(X.) + p(X,). But
p(Xy) + p(Xy) = p(X%(u)). Proposition 11 shows that e?, = d¥,. O

Proposition 13 Let u,v € WP such that vV < u.
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(i) Conjecture 4 holds if X% (u) has dimension 0, 1 or 2.

(ii) Conjecture 4 holds if and only if for any y € W¥ such that vV <y <u we
have [EZ(y)]Qo = 04000y

Proof. If ¥?(u) has dimension 0 then v = vV. In particular [X%(y)]e, = [pt] =
Oy D00y

If ¥¥(u) has dimension 1 then u = s,v", for some simple root a. Moreover,
I(u) = I(vV)+1. This implies that X, is stable by the action of P, (the minimal
parabolic subgroup associated to «). In particular s, X, = X,. It follows that
u X, = u s, X, = (vV)71X,. In particular I?(u) = I¥(v") is a translated
Richardson variety and is irreducible. Moreover, o,.0, = [IX(u)] = [Z%(u)].
Proposition 11 implies that o, oo, = [Z2(u)]e,-

Assume now that u = sasgv", for some simple roots a and 3 such that
l(u) = l(vY) + 2. Then (note that s, X, = X,,)

’u) = v X,nwlviX,
= (vY) ! (spsaXu NwoXy)
= () lsa(saXu Nwoss-Xy),

where * = —wp. But the condition v¥ < sgv" implies that sg«v < v (see for
example Lemma 23). Then sg« X, = X, and I7(u) is obtained by translation
from the Richardson variety s, X, Nwosg«X,. The first assertion of the propo-
sition follows.

Let o be a simple root such that y < s,y < u. Set f = —y~'a and set
Us : C — G, the associated additive one-parameter subgroup. Consider the
flat limit lim; oo Ug(t)X4(y). Since Ug(t)y~'B/B tends to y~'s,B/B when
t goes to infinity, lim; oo Us(t)y 1 Xy = y 184Xy Since vV <y < 5.y, 8 €
D(s,y) — ®(vY) and wl’B € ®(v). In particular, wlv=1X, is Us-stable. But
¥?(s4y) is an irreducible component of the intersection y~'s, X, Nwfv 1 X, ;
and, this intersection is transverse along this component. It follows that X% (s,y)
is an irreducible component of lim;_, o Ug(t)X% (y). Writing

)= > dyow and [Sh(say)) = > diow,
weWr weWr

we deduce that
dl <d, YweWw?r. (89)

Write now
EL@V)] = > dwow and [Shw)]= D ewou.
weW?r weW?r
Since 2Y(vV) is a translated of the Richardson variety X, NwoX,,

Ou-Op = E dwOw-

weWwr

40



By an immediate induction, we deduce from (89) that

ew<d;ﬂ§dw VU)EWP.

Conjecture (4) holds for y = u if and only if for any w € W such that (u,v,w)
is Levi-movable e,, = d,,. Then, d/, = d,, for any such w € W¥ and [X%(y)]e, =
O'uQOO'v- |:|

6.4 Interpretation in terms of harmonic forms

Kostant’s harmonic forms allow to formulate Conjecture 4 as an identity of
integrals.

Proposition 14 Let u and v in W such that v¥ < u. Then 0,000, =
[XY(u)]e, if and only if for any w in WF such that (u,v,w) is Levi-movable,
we have

/ wuv./ wvv./ WV :/ Wy N\ Wyv A\ WV .
(u¥) =1 X,v (V)1 X,y PG (P*)~

Proof. For any w € W, consider the Kostant’s harmonic form w,, and the
nonzero complex number A, (see Theorem 5) such that

v
u

(W] = Aoy (90)

Then

Ay = / - (91)
w1 X,

By Propositions 11 and 12, Conjecture 4 is equivalent to the fact that for any
w € WP such that (u,v,w) is Levi-movable, we have

Ou-0p.O =[Sy (1)].04. (92)
But on one hand
1 fwflx(w)wuv A Wyv
Ou-Op-Ow = S [Wuv A wyv].ow = W ) (93)
And on the other hand
fE” w) WV
2 )] = O (o4)

In particular the equality (92) is equivalent to

)\wv./ Wyv N Wyv = /\UV./\UV./ WV (95)
w1 X, 2 (u)
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which is, by (91), equivalent to

)\wv./ WyVv N\ Wyv :/ wuv./ wvv./ WayV - (96)
w=1X, (uV)=1X,v (WV)"IX v 2 (u)

We claim that

)\wv./ WyV N\ Wyv = / Wyv N\ Wyv A Wepv . (97)
wo1X (Pu)-

w

Let d be the positive integer such that ¢,.0,.0,, = d[pt]. We have
d*/ Wyv A Wyv A Weyv
o G/P )\uv )\»UV va ’
Since 0,,.0, = do,v, we also have

WyVv N Wyv
d= Lt D
/u)lX(w) )\uv )\Uv

Claim (97) is obtained by identifying these two expressions of d.
The proposition follows now from the equations (97) and (96). O

Remark. Observe that (P*)~ is isomorphic to the product of the three T-
stable affine neighborhoods of P/P in (u¥)"!X,v, (v¥)"1X,v and XY (u). With
this observation the equality of Proposition 14 looks like a Fubini formula.

7 The case of the complete flag varieties

Given u in W, set ®(u)® := &~ — ®(u). Let u, v, and w in W. For the complete
flag variety G/B the Levi-movability is easy to understand. Indeed Ty, T,
and T, are L = T-stable. In particular, (o,,0,,0) is Levi-movable if and
only if the natural map T5,p(G/B) — TB/BT(HG/B) 53] TB/BT(UG/B) 2] TB/BTSUG/B)
is an isomorphism. This is equivalent to the fact that &~ is the disjoint union
of ®(u)¢, ®(v)¢, and ®(w)¢. Since ®(w)¢ = ®(w"), one gets the following
equivalence

A0 = D(w)® = B(u)° L D(v)°.

Conjecture 4 generalizes a classical one on G/B.

Proposition 15 Let G be a semisimple group and consider the Belkale-Kumar
cohomology of G/B. Let u and v belong to W. Then 0,000, = [E%(u)]e, if
and only if 0,Og0, is either equal to zero or to oy, for some w € W.

Proof. Assume that 0,000, = [Z%(u)]e, -

Case 1. Suppose there exists w € W such that ®(w) = ®(H2(u)).

Then (see for example Lemma 11) XU (u) = w™!X,,; hence [X%(u)]o, = 0w. In
particular o,®g0, = 0.

42



Case 2. Suppose there exists no w € W such that ®(w) = ®(HY (u)).

Since ®(H!(u)) = ®(u) N ®(v), there is no w € W such that ®(w) = &(u)° U
®(v)°. Hence there is no w € W such that (o, 0y, 0wv) is Levi-movable. Then
0u®00, = 0. Moreover Proposition 10 implies that Gr?(¢/P)=PEu (W) g*(G/P,C) =
{0}. In particular, [X(u)]e, = 0.

Assume now that o,®g0, = o, for some w € W.
Since ®(w)¢ = ®(u)¢ U ®(v)¢, Lemma 11 shows that w!X,, = ¥¥(u). Hence
@00y = [X5 (1))@,

Assume finally that o,®go, = 0.
It remains to prove that [XY(u)]g, = 0. Since ®(H!(u)) = ®(u) N P(v),
[%2 (u)] o, belongs to GrPX«)+P(X) H*(G/B, C). If there is no w in W such that
p(Xw) = p(Xu)+p(X,) then Proposition 10 shows that Gr*X«)*7(X) H*(G/B, C) =
{0}. In particular [X?(u)]e, = 0. Assume now that there exists w in W such

that p(Xy) = p(Xu) + p(X,). Then [X¥] = doy, + - -+ for some integer d. If
d = 0 there is nothing to prove. If d # 0 then 0,.0, = eo,, +- -+ for some integer
e > d. The numerical criterium [BK06, Theorem 15] shows that 0u®00y = €0y,.
This contradicts the assumption o,®q0, = 0. [l

Proposition 15 shows that, for G/B, Conjecture 4 is equivalent to the fol-
lowing one.

Conjecture 5 Let u,v, and w in W such that ®(w)¢ = &(u)° U &(v)°¢. Then
0u®o0y = 0y in H(G/B,C).

Conjecture 5 was stated by Dimitrov and Roth in [DR09]. If G = SL,,(C)
then Conjecture 5 was proved by Richmond in [Ric09]. If G = Sp,,,(C) then
Conjecture 5 was proved independently in [Ric12] and [Resl1lb]. Dimitrov and
Roth have a proof for each simple classical G, but it is not published. Here we
include a proof for the group SOa,,41(C).

Proposition 16 Conjecture 5 holds for the group SOa,+1(C).

Proof. Let V be a (2n + 1)-dimensional complex vector space and let B =

(1,...,Zan+1) be a basis of V*. Let G be the special orthogonal group associ-
ated to the quadratic form Q = :vn+1 + Z?:l ZTiTon+2—;. Consider the maximal
torus T = {diag(t1,...,tn, 1,t;",...,t7") : t; € C*} of G. Let B be the Borel

subgroup of G consistlng of upper triangular matrices in the dual base of B.
Consider W, ®, ®* associated to T C B C G.

Let u, v, and w in W such that ¢,®00,O¢0,, = d[pt] for some positive
integer d. It remains to prove that d = 1. The Levi-movability implies that
O™ = P(u) U P(v) U D(w)e.

Consider the linear group G = GL(V ). Let T denote the subgroup of G
consisting of diagonal matrices and let B denote the subgroup of G consisting
of upper triangular matrices in G. Consider W, &, &+ associatedto T ¢ B C G.

43



Since T is a regular torus in G, the group W identifies with a subgroup of W.
In particular, u,v, and w belong to W. One can easily check that the similar
property of ®~ implies that ®~ = &(u)¢ L &(v)¢ L $(w)¢. Consider now the
three Schubert varieties Xu, XU, and Xw in G/B The fact that Conjecture 5
holds for G implies that

v X, Nv X, nw X, ={B/B}. (98)

Consider now the inclusion G/B C G'/B Then X, is contained in X, (and
similar inclusions hold for v and w). In particular, the condition (98) implies
that

v X, Nnv X, nw X, = {B/B}. (99)

Moreover, the condition on @~ implies that the intersection in (99) is transverse.
It follows that d = 1. O

Proposition 17 Conjecture 5 holds for the groups of type Fy and Eg.

Proof. For w € W set
pw) =[] (oo,
aedtNwdt
where (-, -) is a W-invariant scalar product and p is the half sum of the positive
roots. Let u,v, and w in W such that ®(w)® = ®(u)® U &(v)°. By [BKOG,
Corollary 44],
p(u).p(v)

@ =
0400y p(w)

Ow

in H*(G/B,C). To prove the proposition, it is sufficient to check that p(w) =
p(u).p(v). This is checked by a Sage program (see [Resl3]). For example, in
type Fy, if

uY = 53595359, UV = 51595354525351525354 and
W™ = 51592535452535152535453525352

then

3
p(u) =5 p(v) = 113400 p(w) = 170100.

And, in type Eg, if

U = 565554535254555655583 U — 54535254555453525459
W = 56555453525455565554535254555453525453852

then
p(u) = 20160 p(v) = 4320 p(w) = 87091200.
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