Dimensionality Reduction for BCI classification using Riemannian geometry - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Dimensionality Reduction for BCI classification using Riemannian geometry

Résumé

In the past few years, there has been an increasing interest among the Brain-Computer Interface research community in classification algorithms that respect the intrinsic geometry of covariance matrices. These methods are based on concepts of Riemannian geometry and, despite demonstrating good performances on several occasions, do not scale well when the number of electrodes increases. In this paper, we evaluate two methods for reducing the dimension of the covariance matrices in a geometry-aware fashion. Our results on three different datasets show that it is possible to considerably reduce the dimension of covariance matrices without losing classification power.
Fichier principal
Vignette du fichier
root.pdf (549.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01591258 , version 1 (21-09-2017)

Identifiants

Citer

Pedro Luiz Coelho Rodrigues, Florent Bouchard, Marco Congedo, Christian Jutten. Dimensionality Reduction for BCI classification using Riemannian geometry. BCI 2017 - 7th International Brain-Computer Interface Conference, Gernot R. Müller-Putz, Sep 2017, Graz, Austria. ⟨10.3217/978-3-85125-533-1-16⟩. ⟨hal-01591258⟩
651 Consultations
669 Téléchargements

Altmetric

Partager

More