Multiple solutions for a self-consistent Dirac equation in two dimensions - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Physics Année : 2018

Multiple solutions for a self-consistent Dirac equation in two dimensions

Résumé

This paper is devoted to the variational study of an effective model for the electron transport in a graphene sample. We prove the existence of infinitely many stationary solutions for a nonlin-ear Dirac equation which appears in the WKB limit for the Schrödinger equation describing the semi-classical electron dynamics. The interaction term is given by a mean field, self-consistent potential which is the trace of the 3D Coulomb potential. Despite the nonlinearity being 4-homogeneous, compactness issues related to the limiting Sobolev embedding $H^{\frac{1}{2}}(\Omega,\mathbb{C})\rightarrow L^{4} (\Omega,\mathbb{C})$ are avoided thanks to the regular-ization property of the operator $(-\Delta)^{-\frac{1}{2}$. This also allows us to prove smoothness of the solutions. Our proof follows by direct arguments.
Fichier principal
Vignette du fichier
DiracHartree.pdf (338.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01590235 , version 1 (19-09-2017)
hal-01590235 , version 2 (13-03-2018)

Identifiants

Citer

William Borrelli. Multiple solutions for a self-consistent Dirac equation in two dimensions. Journal of Mathematical Physics, 2018. ⟨hal-01590235v2⟩
138 Consultations
155 Téléchargements

Altmetric

Partager

More