Stimulus sensitivity of a spiking neural network model - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2018

Stimulus sensitivity of a spiking neural network model

Résumé

Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.
Fichier principal
Vignette du fichier
dynamical-range-MF-Hawkes-revised.pdf (498.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01589112 , version 1 (18-09-2017)
hal-01589112 , version 2 (09-11-2017)

Licence

Identifiants

Citer

Julien Chevallier. Stimulus sensitivity of a spiking neural network model. Journal of Statistical Physics, 2018, 170 (4), pp.800-808. ⟨10.1007/s10955-017-1948-y⟩. ⟨hal-01589112v2⟩
469 Consultations
158 Téléchargements

Altmetric

Partager

More