Second order nonlinear gyrokinetic theory : From the particle to the gyrocenter - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Second order nonlinear gyrokinetic theory : From the particle to the gyrocenter

Résumé

A gyrokinetic reduction is based on a specific ordering of the different small parameters characterizing the background magnetic field and the fluctuating electromagnetic fields. Here we consider the following ordering of the small parameters: $\epsilon_B=\epsilon_\delta^2$ where $\epsilon_B$ is the small parameter associated with spatial inhomogeneities of the background magnetic field and $\epsilon_\delta$ characterizes the small amplitude of the fluctuating fields. In particular, we do not make any assumption on the amplitude of the background magnetic field. Given this choice of ordering, we describe a self-contained and systematic derivation which is particularly well suited for the gyrokinetic reduction, following a two-step procedure : Using a translation in velocity, we embed the transformation performed on the symplectic part of the gyrocentre reduction in the guiding-centre one. Using a canonical Lie transform, we then eliminate the gyroangle dependence from the Hamiltonian. We derive the fully electromagnetic gyrokinetic equations at the second order in $\epsilon_\delta$.
Fichier principal
Vignette du fichier
Gyro_v2017-11-10_arxiv.pdf (308.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01587560 , version 1 (14-09-2017)
hal-01587560 , version 2 (10-11-2017)
hal-01587560 , version 3 (23-04-2018)

Identifiants

Citer

Natalia Tronko, Cristel Chandre. Second order nonlinear gyrokinetic theory : From the particle to the gyrocenter. 2017. ⟨hal-01587560v2⟩
248 Consultations
305 Téléchargements

Altmetric

Partager

More