Rainfall erosivity in catchments contaminated with fallout from the Fukushima Daiichi nuclear power plant accident - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Hydrology and Earth System Sciences Année : 2016

Rainfall erosivity in catchments contaminated with fallout from the Fukushima Daiichi nuclear power plant accident

Résumé

The Fukushima Daiichi nuclear power plant (FD-NPP) accident in March 2011 resulted in the fallout of significant quantities of radiocesium over the Fukushima region. After reaching the soil surface, radiocesium is quickly bound to fine soil particles. Thereafter, rainfall and snowmelt runoff events transfer particle-bound radiocesium downstream. Characterizing the precipitation regime of the fallout-impacted region is thus important for understanding post-deposition radiocesium dynamics. Accordingly, 10 min (1995-2015) and daily precipitation data (1977-2015) from 42 meteorological stations within a 100 km radius of the FDNPP were analyzed. Monthly rainfall erosiv-ity maps were developed to depict the spatial heterogene-ity of rainfall erosivity for catchments entirely contained within this radius. The mean average precipitation in the region surrounding the FDNPP is 1420 mm yr −1 (SD 235) with a mean rainfall erosivity of 3696 MJ mm ha −1 h −1 yr −1 (SD 1327). Tropical cyclones contribute 22 % of the precipitation (422 mm yr −1) and 40 % of the rainfall erosiv-ity (1462 MJ mm ha −1 h −1 yr −1 (SD 637)). The majority of precipitation (60 %) and rainfall erosivity (82 %) occurs between June and October. At a regional scale, rainfall ero-sivity increases from the north to the south during July and August, the most erosive months. For the remainder of the year, this gradient occurs mostly from northwest to southeast. Relief features strongly influence the spatial distribution of rainfall erosivity at a smaller scale, with the coastal plains and coastal mountain range having greater rainfall ero-sivity than the inland Abukuma River valley. Understanding these patterns, particularly their spatial and temporal (both inter-and intraannual) variation, is important for contextu-alizing soil and particle-bound radiocesium transfers in the Fukushima region. Moreover, understanding the impact of tropical cyclones will be important for managing sediment and sediment-bound contaminant transfers in regions im-pacted by these events.
Fichier principal
Vignette du fichier
Laceby_HESS_2016.pdf (4.27 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01587511 , version 1 (14-05-2020)

Identifiants

Citer

J. Patrick Laceby, Caroline Chartin, O. Evrard, Yuichi Onda, Laurent Garcia-Sanchez, et al.. Rainfall erosivity in catchments contaminated with fallout from the Fukushima Daiichi nuclear power plant accident. Hydrology and Earth System Sciences, 2016, 20 (6), pp.2467 - 2482. ⟨10.5194/hess-20-2467-2016⟩. ⟨hal-01587511⟩
164 Consultations
115 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More