Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Automatic Control Année : 2018

Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control

Résumé

The goal of this work is to compute a boundary control of reaction-diffusion partial differential equation. The boundary control is subject to a constant delay, whereas the equation may be unstable without any control. For this system equivalent to a parabolic equation coupled with a transport equation, a prediction-based control is explicitly computed. To do that we decompose the infinite-dimensional system into two parts: one finite-dimensional unstable part, and one stable infinite-dimensional part. An finite-dimensional delay controller is computed for the unstable part, and it is shown that this controller succeeds in stabilizing the whole partial differential equation. The proof is based on a an explicit form of the classical Artstein transformation, and an appropriate Lyapunov function. A numerical simulation illustrate the constructive design method.
Fichier principal
Vignette du fichier
heatdelay.pdf (408.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01583199 , version 1 (07-09-2017)
hal-01583199 , version 2 (18-04-2019)

Identifiants

Citer

Christophe Prieur, Emmanuel Trélat. Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control. IEEE Transactions on Automatic Control, In press, ⟨10.1109/TAC.2018.2849560⟩. ⟨hal-01583199v1⟩
828 Consultations
595 Téléchargements

Altmetric

Partager

More