Spectral analysis of a model for quantum friction
Résumé
An otherwise free classical particle moving through an extended spatially homogeneous medium with which it may exchange energy and momentum will undergo a frictional drag force in the direction opposite to its velocity with a magnitude which is typically proportional to a power of its speed. We study here the quantum equivalent of a classical Hamiltonian model for this friction phenomenon that was proposed in [11]. More precisely, we study the spectral properties of the quantum Hamiltonian and compare the quantum and classical situations. Under suitable conditions on the infrared behavior of the model, we prove that the Hamiltonian at fixed total momentum has no ground state except when the total momentum vanishes, and that its spectrum is otherwise absolutely continuous.