New Insights on Gas Hydroquinone Clathrates Using in Situ Raman Spectroscopy: Formation/Dissociation Mechanisms, Kinetics, and Capture Selectivity - Archive ouverte HAL Access content directly
Journal Articles Journal of Physical Chemistry A Year : 2017

New Insights on Gas Hydroquinone Clathrates Using in Situ Raman Spectroscopy: Formation/Dissociation Mechanisms, Kinetics, and Capture Selectivity

(1) , (2) , (1) , (2)
1
2

Abstract

Hydroquinone (HQ) is known to form organic clathrates with different gaseous species over a wide range of pressures and temperatures. However, the enclathration reaction involving HQ is not fully understood. This work offers new elements of understanding HQ clathrate formation and dissociation mechanisms. The kinetics and selectivity of the enclathration reaction were also investigated. The focus was placed on HQ clathrates formed with CO2 and CH4 as guest molecules for potential use in practical applications for the separation of a CO2/CH4 gas mixture. The structural transition from the native form (α-HQ) to the clathrate form (β-HQ), as well as the reverse process, were tracked using in situ Raman spectroscopy. The clathrate formation was conducted at 323 K and 3.0 MPa, and the dissociation was conducted at 343 K and 1.0 kPa. The experiments with CH4 confirmed that a small amount of gas can fill the α-HQ before the phase transition from α- to β-HQ begins. The dissociation of the CO2–HQ clathrates highlighted the presence of a clathrate structure with no guest molecules. We can therefore conclude that HQ clathrate formation and dissociation are two-step reactions that pass through two distinct reaction intermediates: guest-loaded α-HQ and guest-free β-HQ. When an equimolar CO2/CH4 gas mixture is put in contact with either the α-HQ or the guest-free β-HQ, the CO2 is preferentially captured. Moreover, the guest-free β-HQ can retain the CO2 quicker and more selectively.
Fichier principal
Vignette du fichier
Coupan_21616.pdf (3.33 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01581869 , version 1 (21-01-2019)

Identifiers

Cite

R. Coupan, Eve Péré, Christophe Dicharry, Jean-Philippe Torre. New Insights on Gas Hydroquinone Clathrates Using in Situ Raman Spectroscopy: Formation/Dissociation Mechanisms, Kinetics, and Capture Selectivity. Journal of Physical Chemistry A, 2017, 121 (29), pp.5450-5458. ⟨10.1021/acs.jpca.7b05082⟩. ⟨hal-01581869⟩
43 View
56 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More