A fractal shape optimization problem in branched transport - Archive ouverte HAL
Article Dans Une Revue Journal de Mathématiques Pures et Appliquées Année : 2019

A fractal shape optimization problem in branched transport

Résumé

We investigate the following question: what is the set of unit volume which can be best irrigated starting from a single source at the origin, in the sense of branched transport? We may formulate this question as a shape optimization problem and prove existence of solutions, which can be considered as a sort of " unit ball " for branched transport. We establish some elementary properties of optimizers and describe these optimal sets A as sublevel sets of a so-called landscape function which is now classical in branched transport. We prove β-Hölder regularity of the landscape function, allowing us to get an upper bound on the Minkowski dimension of the boundary: dim ∂A ≤ d − β (where β := d(α − (1 − 1/d)) ∈ (0, 1) is a relevant exponent in branched transport, associated with the exponent α > 1 − 1/d appearing in the cost). We are not able to prove the upper bound, but we conjecture that ∂A is of non-integer dimension d − β. Finally, we make an attempt to compute numerically an optimal shape, using an adaptation of the phase-field approximation of branched transport introduced some years ago by Oudet and the second author.
Fichier principal
Vignette du fichier
fractal_optimal_shape_rev1-2_amsart.pdf (820.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01581675 , version 1 (04-09-2017)
hal-01581675 , version 2 (28-12-2017)

Identifiants

Citer

Paul Pegon, Filippo Santambrogio, Qinglan Xia. A fractal shape optimization problem in branched transport. Journal de Mathématiques Pures et Appliquées, 2019, 123, pp.244-269. ⟨10.1016/j.matpur.2018.06.007⟩. ⟨hal-01581675v2⟩
526 Consultations
278 Téléchargements

Altmetric

Partager

More