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We investigate the following question: what is the set of unit volume which can be best irrigated starting from a single source at the origin, in the sense of branched transport? We may formulate this question as a shape optimization problem and prove existence of solutions, which can be considered as a sort of "unit ball" for branched transport. We establish some elementary properties of optimizers and describe these optimal sets A as sublevel sets of a so-called landscape function which is now classical in branched transport. We prove β-Hölder regularity of the landscape function, allowing us to get an upper bound on the Minkowski dimension of the boundary:

) is a relevant exponent in branched transport, associated with the exponent α > 1-1/d appearing in the cost). We are not able to prove the lower bound, but we conjecture that ∂A is of non-integer dimension d -β. Finally, we make an attempt to compute numerically an optimal shape, using an adaptation of the phase-field approximation of branched transport introduced some years ago by Oudet and the second author.

Introduction

Given two probability measures µ, ν on R d , a classical optimization problem amounts to finding a connection between the two measures which has minimal cost. In branched transport, such a connection will be performed along a 1-dimensional structure such that the cost for moving a mass m at distance is proportional to m α × where α is some concave exponent α ∈ [0, 1]. The map t → t α being subadditive (even strictly subadditive for α < 1), that is to say (a + b) α ≤ a α + b α , it is cheaper for masses to travel together as much as possible. Consequently, the optimal connections exhibit branching structures: for instance, if one wishes to transport one Dirac mass to two Dirac masses of mass 1/2, the optimal graph will be Y -shaped.

A early model has been proposed by Gilbert in [START_REF] Gilbert | Minimum Cost Communication Networks[END_REF] as an extension of Steiner problem (see [START_REF] Gilbert | Steiner Minimal Trees[END_REF]) in a discrete setting, where the connection between two atomic measures is made through weighted oriented graphs. There are two main extensions of this model to a continuous setting, i.e. with arbitrary probability measures. The first one was introduced in 2003 by the third author in [START_REF] Xia | Optimal paths related to transport problems[END_REF] and can be viewed as a Eulerian model. It is based on vector measures and roughly reads as:

min ˆ dv dH 1 (x) α d H 1 (x) : ∇ • v = µ -ν ,
minimizing among vector measures which have an H 1 -density. A Lagrangian model was introduced essentially at the same time by and Maddalena, Solimini, Morel [START_REF] Maddalena | A variational model of irrigation patterns[END_REF], and then intensively studied by Bernot, Caselles, Morel [START_REF] Bernot | Traffic plans[END_REF] . It is based on measures on a set of curves, but the description of this model, which is a little more involved, is given in Section 1. An almost up-to-date reference on branched transport resides in the book by the same authors [START_REF] Bernot | Optimal transportation networks[END_REF].

Looking at the optimal branching structures computed numerically in [START_REF] Oudet | A Modica-Mortola approximation for branched transport and applications[END_REF] (in some non-atomic cases), or at natural drainage networks and their irrigations basins, one is tempted to describe them as fractal (see [START_REF] Rodriguez-Iturbe | Fractal river basins: chance and self-organization[END_REF]). Actually, even though the underlying network has infinitely many branching points, it is stil a 1-rectifiable set, hence it is not clear in what sense fractality appears. Fractality is a notion which usually relates either to self-similarity properties of non-smooth objects, or to non-integer dimension of sets. A first rigorous result which would fall in the first category is proven by Brancolini and Solimini in [START_REF] Brancolini | Fractal regularity results on optimal irrigation patterns[END_REF]: for sufficiently diffuse measures (for example the Lebesgue measure restricted to a Lipschitz open set), the number of branches of length ∼ ε stemming from a branch of length is of order /ε. This may read as a self-similarity property since in a way the total length is preserved when looking at subbranches at all scales.

The present paper leans towards the other notion of fractality, that is towards "fractal" dimension. Some sets in branched transport have already been proposed as candidates to exhibit non-integer dimension, for instance the boundary of adjacent irrigation basins (an open conjecture by J.-M. Morel). Here we are interested in another candidate which is related to branched transport: the boundary of what we call unit balls for branched transport. With the results of the present paper, we can only prove an upper bound on the dimension, which is non-integer, and conjecture that this upper bound is actually sharp.

The article is divided into five parts. In a preliminary section we define properly the Lagrangian framework of branched transport and its basic features, and we formulate our question as a shape optimization problem involving the irrigation distance. Section 2 is devoted to the proof of existence of minimizers and to elementary properties of minimizers. In Section 3 we prove the β-Hölder regularity of the landscape function, which appears in the description of optimizers, and use it to derive an upper bound on the Minkowski dimension of the boundary of the optimizers in Section 4. The final section is an attempt at computing optimizers numerically, which is particularly useful due to the fact that we are not fully able to answer theoretically the question of the fractal behavior of the boundary. This is done by adapting the Modica-Mortola approach introduced by [START_REF] Oudet | A Modica-Mortola approximation for branched transport and applications[END_REF], and allows to provide some convincing computer visualizations.

Preliminaries

As preliminaries, we quickly set the Lagrangian framework of branched transport and its main features. For more details, we refer to the book [START_REF] Bernot | Optimal transportation networks[END_REF] or to [Peg17, Sections 1-2] for a simpler exposition.

1.1. The irrigation problem. We denote by Γ(R d ) the set of 1-Lipschitz curves in R d parameterized on [0, ∞], endowed with the topology of uniform convergence on compact sets.

Irrigation plans. We call irrigation plan any probability measure η ∈ Prob(Γ) satisfying the following finite-length condition

(1.1) L(η) := ˆΓ L(γ) dη(γ) < +∞,
where

L(γ) = ´∞ 0 | γ(t)| dt. Notice that any irrigation plan is concentrated on Γ 1 (R d ) := {γ : L(γ) < ∞}.
We denote by IP(R d ) the set of all irrigation plans η ∈ Prob(Γ). If µ and ν are two probability measures on R d , one says that η ∈ IP(R d ) irrigates ν from µ if one recovers the measures µ and ν by sending the mass of each curve respectively to its initial point and to its final point, which means that

(π 0 ) # η = µ and (π ∞ ) # η = ν,
where π 0 (γ) = γ(0), π ∞ (γ) = γ(∞) := lim t→+∞ γ(t) and f # η denotes the push-forward of η by f whenever f is a Borel map 1 . We denote by IP(µ, ν) the set of irrigation plans irrigating ν from µ:

IP(µ, ν) = {η ∈ IP(R d ) : (π 0 ) # η = µ, (π ∞ ) # η = ν}.
If η is a given irrigation plan, we define the multiplicity at x, that is the total mass passing by x, as

θ η (x) = η({γ ∈ Γ : x ∈ γ}),
where x ∈ γ means that x belongs to the image of the curve γ. Finally, for any nonnegative function f , we denote by ´γ f (x) dx the line integral of f along γ ∈ Γ:

ˆγ f (x) dx := ˆ+∞ 0 f (γ(t))| γ(t)| dt.
Irrigation costs. For α ∈ [0, 1] we consider the irrigation cost

I α : IP(R d ) → [0, ∞] defined by I α (η) := ˆΓ ˆγ θ η (x) α-1 dx dη(γ),
with the conventions 0 α-1 = ∞ if α < 1, 0 α-1 = 1 otherwise, and ∞ × 0 = 0. If µ, ν are two probability measures on R d , the irrigation (or branched transport) problem consists in minimizing the cost I α on the set of irrigation plans which send µ to ν, which reads

(LI α ) min η∈IP(µ,ν) ˆΓ ˆγ θ η (x) α-1 dx dη(γ).
We set Z η (γ) = ´γ θ η (x) α-1 dx so that the cost may expressed as

I α (η) = ˆΓ Z η (γ) dη(γ).
The following results are extracted from [BCM05; Peg17; Xia03].

1 Notice that limt→∞ γ(t) exists if γ ∈ Γ 1 (K), and this is all we need since any irrigation plan is concentrated on Γ 1 (K).

Proposition 1.1 (First variation inequality for I α ). If η is an irrigation plan with I α (η) finite, then for all irrigation plan η the following holds:

(1.2)

I α (η) ≤ I α (η) + α ˆZη (γ) d(η -η).
Notice that the integral ´Zη d(η-η) is well-defined since ´Zη dη < ∞ and Z η is nonnegative, though it may be infinite.

Theorem 1.2 (Existence of minimizers,). For any pair of probability measures µ, ν ∈ Prob(R d ) which have compact support, the problem (LI α ) admits a minimizer.

Theorem 1.3 (Irrigability). If 1 -1 d < α < 1, for any µ, ν ∈ Prob(R d )
with compact support there exists some η ∈ IP(µ, ν) such that I α (η) is finite.

From now on we assume that α ∈ 1 -1 d , 1 .

Irrigation distance. Let us set

d α (µ, ν) = min{I α (η) : η ∈ IP(µ, ν)}
for any pair µ, ν of probability measures on R d . For any compact K ⊆ R d , it induces a distance on Prob(K) which metrizes the weak-convergence of measures in the duality with C(K). On non-compact subsets of R d , the distance d α is lower semicontinuous w.r.t. the weak-convergence of measures in the duality with bounded and continuous functions (narrow convergence) 2 .

Proposition 1.4 (Scaling law). For any compactly supported measures µ, ν with equal mass, there is an upper bound on the irrigation distance depending on the mass and the diameter.

We set µ = µ -µ ∧ ν, ν = ν -µ ∧ ν the disjoint parts of the measures and m = |µ | = |ν | their common mass. Then:

d α (µ, ν) ≤ Cm α diam(supp µ ∪ supp ν ).
Landscape function. The landscape function was introduced by the second author in [START_REF] Santambrogio | Optimal channel networks, landscape function and branched transport[END_REF], in the single-source case. It has been then studied by Brancolini, Solimini in [START_REF] Brancolini | On the Hölder regularity of the landscape function[END_REF] and by the third author in [START_REF] Xia | On landscape functions associated with transport paths[END_REF]. It will be a central tool in the study of the shape optimization problem we are going to introduce. We recall here the basic definitions and properties. Given an optimal irrigation plan η ∈ IP(δ 0 , ν), we say that a curve γ is η-good if

• the quantity Z η (γ) = ´γ θ η (x) α-1 dx is finite,
• for all t < T (γ),

θ η (γ(t)) = η({γ ∈ Γ(R d ) : γ = γ on [0, t]}),
where

T (γ) = inf{t ∈ [0, ∞] : γ(s) = γ(∞) for all s ∈ [t, ∞]}
is the stopping time of γ. One may prove by optimality that η is concentrated on the set of η-good curves. Moreover it is proven in [START_REF] Santambrogio | Optimal channel networks, landscape function and branched transport[END_REF] that for all η-good curves γ, the quantity Z η (γ) depends only on the final point γ(∞) of the curve, thus we may define the landscape function z η as follows:

z η (x) = Z η (γ) if γ is an η-good curve s.t. x = γ(∞), +∞ otherwise.
2 Proving this is just an adaptation of the proof on compact sets. If µ is fixed (for example) and νn → ν with ηn ∈ IP(µ, νn) optimal and parameterized by arc length, assuming that the cost is bounded, the irrigation plans ηn are tight and one may extract a subsequence converging to some η which irrigates ν and whose cost is less than lim inf dα(µ, νn) by lower semicontinuity of Iα.

Notice that for an optimal η the cost may be expressed in terms of z η :

I α (η) = ˆΓ Z η (γ) dη(γ) = ˆRd z η (x) dν(x).
Finally, one may show that z η is lower semicontinuous and that the inequality z η (x) ≥ |x| holds.

1.2. The shape optimization problem. We ask ourselves the following question: what is the set of unit volume which is closest to the origin in the sense of irrigation? To give this a precise meaning, we embed everything in the space of probability measures; hence we want to minimize the d α distance between the unit Dirac mass at 0 ∈ R d and sets E of unit volume, seen as the uniform measure on E. This problem reads

(S α ) min {d α (δ 0 , 1 E L) : |E| = 1},
where L denotes the Lebesgue measure on R d . We relax this problem by minimizing on a larger set, which is the set of probability measures with Lebesgue density bounded by 1, thus getting:

(R α ) min {X α (ν) : ν ≤ 1, ν ∈ Prob(R d )},
where X α (ν) = d α (δ 0 , ν).

In the following, we will sometimes encounter positive measures which do not have unit mass, thus we extend the functional by setting X α (ν) := d α (|ν|δ 0 , ν) for any finite measure ν.

A key tool in the analysis of this problem lies in the following proposition, proved in [START_REF] Santambrogio | Optimal channel networks, landscape function and branched transport[END_REF] under slightly more restrictive hypotheses.

Proposition 1.5 (First variation inequality for X α ). Suppose that ν ∈ Prob(R d ) with X α (ν) < ∞. Suppose also that η is an optimal irrigation plan between |ν|δ 0 and ν, with landscape function z η . The following holds:

X α (ν) ≤ X α (ν) + α ˆzη d(ν -ν) for any ν ∈ Prob(R d ).
Notice also that the integral ´zη d(ν -ν) is well-defined since ´zη dν = I α (η) = X α (ν) < ∞ and z η is non-negative, though it may be infinite.

Proof. If ´zη dν = ∞ then there is nothing to prove. Otherwise for ν-a.e. x, z η (x) is finite hence there are η-good curves reaching x and one can find a measurable 3 map g : R d → Γ which associates with every x an η-good curve reaching x. Let us build an irrigation plan η ∈ IP(|ν|δ 0 , ν) which is concentrated on η-good curves, by setting η = g # ν, so that

ˆΓ Z η dη = ˆΓ z η (γ(∞)) dη(γ) = ˆRd z η (x) dν.
Then, by the first variation inequality for I α , we get:

X α (ν) . = d α (|ν|δ 0 , ν) ≤ I α (η) ≤ I α (η) + α ˆΓ Z η d(η -η) = X α (ν) + α ˆRd z η d(ν -ν).
3 One can characterize η-good curves as those γ such that Zη(γ) < ∞ where Zη(γ) := ´∞ 0 |γ| t,η dt is a slight variation of Zη defined in [START_REF] Santambrogio | Optimal channel networks, landscape function and branched transport[END_REF] which is also lower semicontinuous. Hence the multifunction associating to every x the set of η-good curves reaching x can be written as ∈Q {γ ∈ Γ : Zη(γ) ≤ , γ(∞) = x}, i.e. as a countable union of multifunctions with closed graph. This means that this multifunction is measurable and admits a measurable selection (see e.g. [START_REF] Castaing | Convex analysis and measurable multifunctions[END_REF]).

Existence and first properties

We will often denote by C = C(α, d) or c = c(d) different positive constants which depend only on α, d or d respectively.

Theorem 2.1. The relaxed shape optimization problem (R α ) admits at least a minimizer.

Proof. The existence of a minimizer follows from the lower semicontinuity and tightness. Indeed, any minimizing sequence ν n must have bounded first moment since

ˆ|x| dν(x) ≤ ˆzη (x) dν(x) = d α (δ 0 , ν).
A bound on the first moment implies tightness of the sequence and, up to extracting a subsequence, one has ν n ν. The condition ν n ≤ 1 implies ν ≤ 1 and the lower semicontinuity of d α provides the optimality of ν.

For 1 > α > 1 -1 d , we will denote the optimal value for the relaxed shape optimization problem (R α ) by:

e α := min{d α (δ 0 , ν) : ν ≤ 1 and ν ∈ Prob(R d )}.
Lemma 2.2 (Scaling lemma). For any finite measure ν we have

X α (ν) ≥ e α |ν| α+ 1 d . Proof. For λ = |ν| -1/d , let ν = λ d ϕ # (ν) be a scaling of ν under the map ϕ(x) = λx in R d .
Then, ´Rd dν = λ d ´Rd dν = λ d |ν| = 1 and ν ≤ 1. Thus,

e α ≤ d α (ν, δ 0 ) = λ αd+1 d α (ν, |ν|δ 0 ) = |ν| -(α+ 1 d ) X α (ν).
For any ν, we say that z is a landscape function of ν if it is the landscape function z η associated with some optimal irrigation plan η ∈ IP(δ 0 , ν).

Theorem 2.3. Let ν be a minimizer of (R α ) and z a landscape function of ν. Then ν is the indicator of a set A which is a sublevel set of z:

(2.1)

A = {x : z(x) ≤ z }, with z = e α α α + 1 d .
In particular, A is a solution to problem (S α ) and it is a compact and path-connected set.

Proof. We show that ν also minimizes the first variation of X α , that is µ → ´z dµ. Take ν a competitor for (R α ). By Proposition 1.5, one has:

X α (ν) ≤ X α (ν) + α ˆz d(ν -ν), but X α (ν) ≤ X α (ν), thus ˆz dν ≤ ˆz dν
for any ν. So as to minimize this quantity, ν must concentrate its mass on the points where z takes its lowest values. More precisely, there is a value

z ∈ [0, ∞] such that ν(x)      = 1 if z(x) < z , ∈ [0, 1] if z(x) = z , = 0 if z(x) > z .
Indeed, we just take z = sup{t ∈ R : |{z(x) ≤ t}| < 1}. Since ´z dν = e α > 0, necessarily z > 0. This kind of arguments is typical in optimization problems under an upper density constraint, as it was for instance done for crowd motion applications in [START_REF] Maury | Congestion-driven dendritic growth[END_REF].

Step 1: z ≤ eα α α + 1 d . For 0 ≤ k < z , we consider the competitor ν = 1 {z≤k} and set |ν| = 1 -m, noting that m > 0 by definition of z . Using Lemma 2.2 and Proposition 1.5, one gets

e α (1 -m) α+ 1 d ≤ X α (ν) ≤ X α (ν) + α ˆz d(ν -ν) = e α -α ˆ{z>k} z dν. Since ν({z > k}) = 1 -|{z ≤ k}| = m, it follows that (2.2) e α (1 -m) α+ 1 d ≤ e α -αkm. As α + 1 d > 1, the map t → t α+ 1 d is (strictly) convex, thus e α 1 -α + 1 d m ≤ e α (1 -m) α+ 1 d ≤ e α -αkm,
hence forgetting the middle term, substracting e α and dividing by m:

αk ≤ e α α + 1 d .

Taking the limit k → z yields:

(2.3) z ≤ e α α α + 1 d .
Step 2: ν = 1 A where A = {z ≤ z }. Take the competitor ν = 1 {z≤z } and set |ν| = 1 + m, m ≥ 0. Using again the scaling lemma and the first variation of X α one gets:

e α (1 + m) α+ 1 d ≤ e α + α ˆz=z z d(ν -ν) = e α + αz m.
Now by strict convexity of t → t α+ 1 d , if m > 0 then one has

e α (1 + m) α+ 1 d > e α 1 + α + 1 d m , thus e α α + 1 d m < αz m, which contradicts (2.3). Consequently m = 0, hence ν = ν = 1 {z≤z } .
Step 3: Compactness and connectedness.

A is closed since z is lower semicontinuous and bounded since z(x) ≥ |x| for all x ∈ R d . It is path-connected since any point x with z(x) ≤ z is the endpoint of an η-good curve γ starting from 0 and γ ⊆ A because z is increasing along this curve.

Step 4:

z ≥ eα α α + 1 d . Take x 0 ∈ A with maximal Euclidean norm. Then the half ball H r (x 0 ) := B r (x 0 ) ∩ {x : x -x 0 , x 0 > 0} is included in A c . We consider the competitor ν = 1 A Hr(x0) , with mass |ν| = 1 + m, where m = |H r (x 0 )| = cr d for some constant c = c(d).
To irrigate ν, we pay at most the cost of irrigation of ν, plus the price for moving an extra mass m from 0 to x 0 along the irrigation plan, plus the cost for moving this mass to B r (x 0 ) \ A, which we can bound by Cm α r thanks to Proposition 1.4, as follows:

X α (ν) = d α ((1 + m)δ 0 , ν) ≤ d α ((1 + m)δ 0 , ν + mδ x0 ) + d α (ν + mδ x0 , ν + 1 Hr(x0) ) = X α (ν + mδ x0 ) + d α (mδ x0 , 1 Hr(x0) ) ≤ e α + αmz(x 0 ) + Crm α ,
where C = C(α, d) is some positive constant. Combining this inequality with the following convexity inequality

X α (ν) ≥ e α (1 + m) α+ 1 d ≥ e α 1 + α + 1 d m ,
and dividing by m > 0, one gets:

e α α + 1 d ≤ αz(x 0 ) + Cr 1+dα-d .
Passing to the limit r → 0, we obtain

z ≥ z(x 0 ) ≥ e α α α + 1 d .

Hölder continuity of the landscape function

The Hölder regularity of the landscape function has been proved in [START_REF] Santambrogio | Optimal channel networks, landscape function and branched transport[END_REF] under some regularity assumptions on ν using Campanato spaces (these spaces were introduced in [START_REF] Campanato | Proprietà di hölderianità di alcune classi di funzioni[END_REF], see [Giu03, Section 2.3] for a modern exposition). Namely, if ν is of the form ν = f L E where the density f (x) and the fraction of mass

Θ E (x, r) := |E∩Br(x)| |Br(x)|
lying in E are bounded from below by some constant c > 0 for all x ∈ E and all r ≤ diam E, then z is β-Hölder continuous where

β := d α -1 - 1 d = 1 + dα -d,
is a number which is strictly between 0 and 1 as 1 > α > 1 -1 d . Another proof for more general regularity assumptions on ν has been given in [START_REF] Brancolini | On the Hölder regularity of the landscape function[END_REF]. In our case, we do not know a priori that A is regular (on the contrary we suspect it has a fractal boundary), hence the Hölder regularity of z does not follow from previous works. Exploiting the fact that A is optimal, we are going to show that z is β-Hölder continuous adapting classical computations to pass from Campanato to Hölder spaces. More precisely, setting A r (x) := A ∩ B r (x) and z r (x) the mean of z on A r (x), we are going to prove the following sequence of inequalities, for arbitrary r ≤ diam A:

Ar(x) |z -z r (x)| ≤ Cr β , (3.1) |z r (x) -z r/2 (x)| ≤ Cr β , (3.2) z r (x) -z(x) ≤ Cr β , (3.3) |z(x) -z r (x)| ≤ Cr β , (3.4) |z |y-x| (x) -z |y-x| (y)| ≤ C|y -x| β . (3.5)
Notice that the two last inequalities imply that z is indeed β-Hölder continuous:

|z(y) -z(x)| ≤ |z(y) -z |y-x| (y)| + |z |y-x| (x) -z |y-x| (y)| + |z(x) -z |y-x| (x)| ≤ C|y -x| β .
The main difficulty we will encounter is that we will quite easily obtain estimates of the form

• • • ≤ C r β Θ A (x, r) 1-α ,
and will need to get rid of the term Θ A (x, r) 1-α , i.e. treat the case when it becomes small.

Main lemmas.

The following lemma will be key to prove the regularity of the landscape function.

Lemma 3.1 (Maximum deviation).

There is a constant C = C(d, α) > 0 such that the following holds:

(3.6) ∀y ∈ A r (x), z -z(y) ≤ C r β Θ A c (x, r) 1-α .
Proof. We consider the competitor ν = 1 A∪Br(x) , with mass |ν| = 1 + m where m = |B r (x) \ A|. For any y ∈ A r (x), let us irrigate ν from 0 by irrigating ν from 0, moving an extra mass m from 0 to y along the irrigation plan, then irrigating 1 Br(x)\A from this mass at y. Using Lemma 2.2 and Proposition 1.4, we have

e α (1 + m) α+ 1 d ≤ X α (ν) ≤ X α (ν) + α ˆz d(mδ y ) + Crm α .
By convexity,

e α 1 + α + 1 d m ≤ (1 + m) α+ 1 d e α ≤ e α + αmz(y) + Crm α , thus, knowing that e α α + 1 d = αz by (2.1): αmz ≤ αmz(y) + Crm α . By definition, m = ω d r d Θ A c (x, r)
where ω d is the volume on the unit d-dimensional ball, hence

z -z(y) ≤ Cr(r d Θ A c (x, r)) α-1 = C r β Θ A c (x, r) 1-α .
Remark 3.1. One can see that if Θ A (x, r) becomes small, then Θ A c (x, r) is large (close to 1), and actually all values of z in A r (x) become close to the same value z up to Cr β .

Lemma 3.2 (Mean deviation).

There is some constant C = C(d, α) > 0 such that Ar(x) |z(y) -z r (x)| dy ≤ Cr β for all r > 0 and all x ∈ A.

Proof. We will first show that

Ar(x) |z(y) -z r (x)| dy ≤ C r β Θ A (x, r) 1-α .
Denoting by zr (x) the central median of z on the set A r (x), there is a disjoint union

A r (x) = A -A + such that |A -| = |A + | = |Ar(x)| 2 and z ≤ zr (x) on A -, z ≥ zr (x) on A + . Let us consider the competitor ν = 1 A -1 A + + 1 A -.
By the first variation lemma:

X α (ν) ≤ X α (ν) + α ˆz d(ν -ν).
Recall that X α (ρ) = d α (δ 0 , ρ) when ρ is a probability measure, which is the case for ν and ν, and that d α is a distance. Thus by the triangle inequality: Consequently:

α ˆz d(ν -ν) ≤ d α (δ 0 , ν) -d α (δ 0 , ν) ≤ d α (ν, ν). We know that d α (ν, ν) ≤ C|ν -ν| α diam(supp(ν -ν)) ≤ C|A r (x)| α r for some C = C(α, d) > 0. Moreover notice that ˆz d(ν -ν) = ˆA+ z(y) dy - ˆA- z ( 
Ar(x) |z(y) -zr (x)| dy ≤ C|A r (x)| α-1 r ≤ C |A r (x)| α-1 |B r (x)| α-1 r 1+d(α-1) = C r β Θ A (x, r) 1-α .
Moreover, one has

|z r (x) -zr (x)| = Ar(x) z(y) -zr (x) dy ≤ Ar(x) |z(y) -zr (x)| dy ≤ C r β Θ A (x, r) 1-α which leads to Ar(x) |z(y) -z r (x)| dy = Ar(x) |z(y) -zr (x)| dy + |z r (x) -zr (x)| ≤ C r β Θ A (x, r) 1-α . Now we get rid of Θ A (x, r) 1-α . If Θ A (x, r) ≥ 1/2,
we get the desired inequality. On the other hand, if Θ A c (x, r) ≥ 1/2, by Lemma 3.1, we have

0 ≤ z -z(y) ≤ Cr β , ∀y ∈ A r (x),
which also implies that 0 ≤ z -z r (x) ≤ Cr β .

By these two inequalities, we have

|z(y) -z r (x)| ≤ Cr β , ∀y ∈ A r (x).
Now, taking the mean over A r (x) y leads to the wanted inequality as well:

Ar(x) |z(y) -z r (x)| dy ≤ Cr β .
Remark 3.2. Notice that the estimate

Ar(x) |z(y) -z r (x)| dy ≤ C r β Θ A (x, r) 1-α
is valid in general: we only use the fact that ν is an indicator function (a density bounded from below would suffice). The optimality of ν comes into play to to get rid of Θ A (x, r).

Hölder regularity.

Proposition 3.3 (Small-scale difference). For all x ∈ A and all r > 0 one has

|z r (x) -z r/2 (x)| ≤ Cr β .
Proof. First we show that

|z r (x) -z r/2 (x)| ≤ C r β Θ A (x, r) 1-α . Indeed, by Lemma 3.2, |z r (x) -z r/2 (x)| ≤ ´Ar/2 (x) |z(y) -z r (x)| dy |A r/2 (x)| ≤ |A r (x)| |A r/2 (x)| Ar(x) |z(y) -z r (x)| dy ≤ 2 d Θ A (x, r) Θ A (x, r/2) Cr β ≤ C r β Θ A (x, r/2) .
As before, if Θ A (x, r/2) ≥ 1/2 we get the desired estimate. Otherwise

Θ A c (x, r/2) ≥ 1/2 and Θ A c (x, r) ≥ 2 -d Θ A c (x, r/2) ≥ 2 -1-d . Now, by Lemma 3.1, 0 ≤ z -z(y) ≤ C r β Θ A c (x, r) ≤ Cr β , ∀y ∈ A r (x).
Consequently 0 ≤ z -z r/2 (x) ≤ Cr β and 0 ≤ z -z r (x) ≤ Cr β which implies that

|z r (x) -z r/2 (x)| ≤ Cr β .
Lemma 3.4 (Lower deviation to the mean). There is a constant C = C(d, α) > 0 such that for all x ∈ A and all r > 0 one has:

(3.7) ∀y ∈ A r (x), z r (x) -z(y) ≤ Cr β .
Proof. First we show that

z r (x) -z(y) ≤ C r β Θ A (x, r) 1-α .
Remove the mass m = |A r (x)| going to A r (x) from the irrigation plan, make it travel along the plan to any fixed y ∈ A r (x) and then send it to A r (x): this should cost more. This implies αmz(y) -α ˆAr(x) z + Cm α r ≥ 0, which may be rewritten as

z r (x) -z(y) ≤ Cm α-1 r ≤ C r β Θ A (x, r) 1-α .
Now if Θ A (x, r) ≥ 1/2 one gets the desired result. Otherwise Θ A c (x, r) ≥ 1/2 and Lemma 3.1 yields: 0 ≤ z -z(y) ≤ Cr β , ∀y ∈ A r (x). Thus 0 ≤ z -z r (x) ≤ Cr β and for any fixed y ∈ A r (x),

|z r (x) -z(y)| ≤ |z r (x) -z | + |z -z(y)| ≤ Cr β ,
from which we also get the wanted inequality. Lemma 3.5 (Deviation to the mean). For all x ∈ A and all r > 0, one has

|z(x) -z r (x)| ≤ Cr β . Proof. By Proposition 3.3, one has |z(x) -z r (x)| ≤ |z(x) -z r/2 (x)| + |z r/2 (x) -z r (x)| ≤ |z(x) -z r/2 (x)| + Cr β ,
which means by setting f (r) = |z(x) -z r (x)| for r > 0 that:

f (r) ≤ f (r/2) + Cr β . Consequently for all k ∈ N f (r) ≤ f (r • 2 -(k+1) ) + Cr β k i=0 2 -iβ thus f (r) ≤ lim sup ε→0 f (ε) + Cr β ∞ i=0 2 -iβ ≤ lim sup ε→0 f (ε) + Cr β .
Now let us prove that f (ε) → 0 when ε → 0, i.e. z ε (x) ε→0 ---→ z(x). We already know that z is lower semi-continuous hence z(x) ≤ lim inf ε→0 z ε (x). Moreover using (3.7), we have

lim sup ε→0 z ε (x) ≤ lim sup ε→0 (z(x) + Cε β ) = z(x),
which implies that z ε (x) → z(x) when ε → 0. Therefore the inequality f (r) ≤ Cr β holds, that is to say:

|z(x) -z r (x)| ≤ Cr β .
Lemma 3.6 (Large scale difference). For any x, y ∈ A, one has:

|z |y-x| (x) -z |y-x| (y)| ≤ C|y -x| β .
Proof. Set r = |y -x|, and ∆ r = B r (x) ∩ B r (y). Notice that, ∆ r being a fixed fraction of

B r (x) (independant of r), |∆ r | = c|B r | for some c = c(d) ∈ (0, 1). If both Θ A c (x, r) ≥ c 2 and Θ A c ( y, r) ≥ c
2 , then by Lemma 3.1 one has:

0 ≤ z -z r (x) ≤ C r β Θ A c (x, r) 1-α ≤ Cr β , and 0 ≤ z -z r (y) ≤ C r β Θ A c (y, r) 1-α ≤ Cr β , which implies the desired inequality (3.8) |z r (x) -z r (y)| ≤ Cr β .
On the other hand, if either Θ A c (x, r) or Θ A c (y, r) is less than c/2, say Θ A c (x, r) ≤ c 2 , we claim the desired inequality (3.8) still holds. Indeed, for all u ∈ A r (x) ∩ A r (y) one has

|z r (x) -z r (y)| ≤ |z r (x) -z(u)| + |z r (y) -z(u)| thus integrating over A r (x) ∩ A r (y) in u one gets: |z r (x) -z r (y)| ≤ 1 |A r (x) ∩ A r (y)| ˆAr(x) |z(u) -z r (x)| du + ˆ|Ar(y)| |z(u) -z r (y)| du ≤ Cr β |A r (x)| + |A r (y)| |A r (x) ∩ A r (y)| ,
the last inequality resulting from Lemma 3.2. Note that

|A r (x) ∩ A r (y)| = |∆ r ∩ A| ≥ |∆ r | -|B r (x) \ A| = c|B r (x)| -|B r (x) \ A| which implies that |A r (x)| + |A r (y)| |A r (x) ∩ A r (y)| ≤ 2|B r (x)| c|B r (x)| -|B r (x) \ A| = 2 c -Θ A c (x, r) ≤ 4 c .
Thus, in this case, we still have As a consequence of this result we may quantify the minimal size of a ball one can put inside A around x in terms of z -z(x) and prove that A has non-empty interior.

|z r (x) -z r (y)| ≤ Cr β |A r (x)| + |A r (y)| |A r (x) ∩ A r (y)| ≤ Cr β .
Proposition 3.8 (Interior points). For some constant C = C(α, d) the following holds:

(3.9) ∀x ∈ A, B r(x) (x) ⊆ A,
where r(x) := C(z -z(x)) 1/β ≥ 0. In particular

{x ∈ A : z(x) < z } ⊆ • A and ∂A ⊆ {x ∈ A : z(x) = z }.
Proof. It suffices to prove (3.9) for x 0 ∈ A satisfying z(x 0 ) < z . Consider a point x ∈ A c . Take a point y ∈ A which is closest to x : it is possible since A is compact. By Lemma 3.1, we know that for small r Θ A c (y, r) 1-α (z -z(y)) ≤ Cr β . But by construction y is such that lim inf r→0 Θ A c (y, r) ≥ 1/2, and since the right-hand side tends to 0, necessarily z(y) = z . By the Hölder continuity of z stated in Theorem 3.7,

z -z(x 0 ) = |z(y) -z(x 0 )| ≤ C|y -x 0 | β ≤ C|x -x 0 | β ,
where the last inequality follows from the fact that |y -

x 0 | ≤ |y -x| + |x -x 0 | ≤ 2|x -x 0 | because y minimizes the distance from x. Hence, for all x ∈ A c , |x-x 0 | ≥ C(z -z(x 0 )) 1/β = r(x 0 )
, which implies the desired result.

On the dimension of the boundary

We are interested in the dimension of the boundary ∂A, our guess being that it should be non-integer, and lie between d -1 and d. Here we look at the Minkowski dimension (also called box-counting dimension). Given a set X, we denote by N ε (X) the maximum amount of disjoint balls of radius ε centered at points of X. When these coincide we just call it the Minkowski dimension and denote it by dim M (X).

We shall get an upper bound on the upper Minkowski dimension. We say that X is of dimension smaller than

δ if dim M X ≤ δ. Lemma 4.1. There is a constant C = C(α, d) such that for all k ≤ z , |{x ∈ A : k < z(x) ≤ z }| ≤ C(z -k). Proof. Consider the competitor ν = 1 {z≤k} with total mass |ν| = 1 -m, where m = |{x ∈ A : k < z(x) ≤ z * }|. As in (2.2), one has e α (1 -m) α+1/d ≤ e α -αkm
hence knowing that αz = (α + 1/d)e α and developing the term on the left-hand side at order 2, we obtain:

-αmz + e α 2 (α + 1 d )(α + 1 d -1)m 2 ≤ -αkm Thus m ≤ C(z -k) with 1/C = e α (α + 1/d)(α + 1/d -1)/(2α).
Theorem 4.2. The set ∂A is of dimension less than d -β.

Proof. For ε > 0 fixed, take disjoint balls (B i ) i∈I of radius ε, where N := |I| = N ε (∂A). We set

B + i = B i \ A, B - i = B i ∩ A.
We split the set of balls into two parts: those which have a larger intersection with A rather than A c , and vice-versa. Namely, we set

I + = {i ∈ I : |B + i | ≥ |B i |/2}, N + = |I + |, I -= {i ∈ I : |B - i | ≥ |B i |/2}, N -= |I -|,
so that I = I + ∪ I -and N ≤ N + + N -. We are going to bound N + and N -by some power of ε.

Step 1: Bound on N -. Since z is β-Hölder continuous on A, one has for each

B i = B ε (x i ): ∀x ∈ B i ∩ A, |z(x) -z | < Cε β ,
since the center x i lies in ∂A ⊆ {z = z } according to Proposition 3.8. Consequently

(∂A) ε ∩ A ⊆ {z -Cε β < z ≤ z },
thus because of Lemma 4.1:

|(∂A) ε ∩ A| ≤ |{z -Cε β < z ≤ z }| ≤ Cε β .
Using the previous inequality and the fact that

|B - i | ≥ |B i |/2 ≥ Cε d for i ∈ I -, one has: CN -ε d ≤ i∈I - |B - i | ≤ |(∂A) ε ∩ A| ≤ Cε β ,
which implies:

(4.1) N -≤ Cε -(d-β) .
Step 2: Bound on N + . We consider the competitor ν = 1 Ã where

à = A ∪ i∈I + B + i . It has a mass |ν| = 1 + m where m = i∈I + |B + i |.
To irrigate ν, we send an extra mass |B + i | to each center x i along the irrigation plan, which costs α|B + i |z , then we send this mass towards B + i , which costs at most C|B + i | α ε. But one should get a cost no less than e α (1 + m) α+1/d by the scaling lemma. Moreover, with a development of order 2 one has:

(1 + m) α+1/d ≥ 1 + (α + 1/d)m + 1/2 • (α + 1/d)(α + 1/d -1)(1 + m) α+1/d-2 m 2 ≥ 1 + (α + 1/d)m + Cm 2
because for ε small, 1 + m is less than 2 for example. Consequently one may say:

e α 1 + (α + 1/d)m + Cm 2 ≤ e α + αmz + i∈I + Cε|B + i | α .
Recall that αz = e α (α + 1/d), thus after simplifying one gets for some C > 0:

(4.2) m 2 ≤ C i∈I + |B + i | α ε ≤ CN + ε 1+αd . Notice that for i ∈ I + , |B + i | ≥ |B i |/2 ≥ Cε d , so that m = i∈I + |B + i | ≥ CN + ε d .
Injecting this into (4.2), one gets:

(N + ε d ) 2 ≤ CN + ε 1+αd , thus (4.3) N + ≤ Cε 1+αd-2d = Cε -(d-β) .
Putting (4.1) and (4.3) together yields:

N ε (∂A) = N ≤ N + + N -≤ C ε d-β , and dim M (∂A) = lim sup ε→0 log(N ε (∂A)) -log(ε) ≤ d -β,
which means that ∂A is of dimension smaller than d -β.

This result pushes us to propose the following conjecture:

Conjecture 4.3. The boundary ∂A is of dimension d -β, in the sense that:

dim H (∂A) = dim M (∂A) = d -β.
Proving this requires to establish the inequality dim H (∂A) ≥ d -β, for which we do not have a working strategy yet.

Numerical simulations

Our goal now is to compute solutions to our shape optimization problem numerically. To perform numerical simulations, we use the Eulerian framework of branched transport, first defined by the third author in [START_REF] Xia | Optimal paths related to transport problems[END_REF]. This framework is based on vector measures with a measure divergence, i.e. measures v ∈ M d (R d ) such that ∇ • v ∈ M(R d ), the set of such measures being denoted by M div (R d ). The cost is the so-called α-mass:

M α (v) =    ˆ dv dH 1 (x) α d H 1 (x) if v is 1-rectifiable, +∞ otherwise.
An elliptic approximation of this functional was introduced by Oudet and the second author in [START_REF] Oudet | A Modica-Mortola approximation for branched transport and applications[END_REF] (see also [START_REF] Santambrogio | A Modica-Mortola approximation for branched transport[END_REF]), in the spirit of Modica and Mortola [START_REF] Modica | Un esempio di Γ --convergenza[END_REF]. The approximate functional is defined for ε > 0 by:

M α ε (v) = ε -σ1 ˆ|v(x)| σ dx + ε σ2 ˆ|v(x)| 2 2 dx
for suitably chosen σ, σ 1 , σ 2 . It is proven in [START_REF] Oudet | A Modica-Mortola approximation for branched transport and applications[END_REF] that M α ε Γ-converges to M α as ε goes to 0, for a suitable topology on M div (R d ). Moreover, the Γ-convergence result also holds imposing an equality constraint on the divergence ∇•v = f ε , for a suitable sequence f ε f , as proven in [START_REF] Monteil | Uniform estimates for a Modica-Mortola type approximation of branched transportation[END_REF]. The results of [START_REF] Oudet | A Modica-Mortola approximation for branched transport and applications[END_REF] are proven in dimension d = 2, but in [START_REF] Monteil | Elliptic approximations of singular energies under divergence constraint[END_REF] there is a proof of how to extend to higher dimension, in the case α > 1 -1/d (in dimension d = 2 there is also a version of the Γ-convergence result for α ≤ 1/2). Also note that, recently, other phase-field approximations for branched transport or other network problems have been studied, see for instance [BOO16; FCM16; BLS15].

Here we adapt the approach of [START_REF] Oudet | A Modica-Mortola approximation for branched transport and applications[END_REF] to our shape optimization problem by adding this time an inequality constraint on the divergence.

Recall that the Lagrangian and Eulerian frameworks are equivalent [START_REF] Pegon | On the Lagrangian branched transport model and the equivalence with its Eulerian formulation[END_REF], so that the irrigation distance may be computed in the following way:

d α (µ, ν) = inf v {M α (v) : ∇ • v = µ -ν}.
Consequently the shape optimization problem (R α ) rewrites, in relaxed form, as:

(ES) min v {M α (v) : µ -1 ≤ ∇ • v ≤ µ} where µ = δ 0 .
Setting a = µ -1, b = µ and some mollified versions a ε = µ ε -1, b ε = µ ε ,for example a convolution of µ with the standard mollifier of suitable size r ε (e.g.

ε σ2 r -d ε = o(1) as in [Mon17]
), we define the following approximate problem, for ε > 0:

(AS) min v {M α ε (v) : a ε ≤ ∇ • v ≤ b ε }.
Let us remark that the above-mentioned Γ-convergence results do not allow us to say that this problem approximates (ES), as the inequality constraint on the divergence is not directly in these works. We leave this question for further investigation, as our aim is for now to make a first attempt to compute numerically an optimal shape for the original problem (S α ). 5.1. Optimization methods. We tackle problem (AS) by descent methods. Two difficulties arise: first of all, the functional M α ε is not convex hence there is no garantee that the methods converge, and if they do, they may converge to a local minimizer which is not necessarily a global minimizer ; secondly, this is a constrained problem, hence we will need to compute projections or resort to proximal methods to handle the constraint. The simplest approach is to use a first-order method, for instance to perform a projected gradient descent on the functional M α ε for ε fixed (but small): The projected gradient method.

v 0 ∈ C v n+1 = p C (v n -τ n ∇M α ε (v n )), where C = {v : a ε ≤ ∇ • v ≤ b ε }
is the convex set of admissible vector fields for (AS).

Computing the projection p C is not an easy task, even more so as we want fast computations since this projection should be done at each step of the algorithm. Actually, this projection step will be quite costly (at least in our approach), hence we need to pass to a higher order method to get to an approximate minimizer in a reasonable number of iterations.

Recall that the projected gradient method is a particular case of the proximal gradient method, which we describe briefly. Consider a problem of the form

min v f (v) + g(v)
where f is smooth and g "proximable", in the sense that one may easily compute its proximal operator

prox τ g (v) = argmin v g(v ) + 1 2τ |v -v| 2 .
The proximal gradient method consists in doing at each step an explicit descent for f and an implicit descent for g:

The proximal gradient method.

v 0 given v n+1 = prox τn g (v n -τ n ∇f (v n )).
The projected gradient method corresponds to the case

g(v) = 0 if v ∈ C, +∞ otherwise.
If there was no function g, we recover the classical gradient descent method. Notice that there is an implicit choice in this method, since we compute gradients which depend on the scalar product. There is no reason that the canonical scalar product is well adapted to the function we want to minimize. Following the work of Lee, Sun and Saunders [START_REF] Lee | Proximal Newton-type methods for minimizing composite functions[END_REF] on Newton-type proximal methods, one may "twist" the scalar product, leading to the more general method:

A "twisted" proximal gradient method.

(5.1) v 0 given

v n+1 = prox τn,Hn g (v n -τ n ∇ Hn f (v n )),
where ∇ H f (x) is the gradient of f with respect to the scalar product x, y H = Hx, y for H an invertible self-adjoint operator, and

prox τ,H g (v) = argmin v g(v ) + 1 2τ v -v 2 H .
The best quadratic model of f around a point x 0 is

Qf x0 (x) = f (x 0 ) + ∇ H f (x 0 ), x H + 1/2 x, x H ,
with H = H f (x 0 ) being the Hessian of f at x, thus it is natural to consider (5.1) with

H n = H f (x n ).
Notice indeed that if g is zero, the proximal operator is the identity and that ∇ H f (v) = H -1 ∇f , so that one recovers Newton's method:

v n+1 = v n -τ n H -1 n ∇f (v n
), which is known to converge quadratically for smooth enough f . This is why this method is called proximal Newton method. However, for large-scale problems, computing and storing the Hessian is very costly, thus an alternative is to set H n to be an approximation of the Hessian of f at v n , thus leading to proximal quasi-Newton methods. These methods were introduced in [LSS14], which we refer to for further detail and theoretical results of convergence.

A very popular choice for H n is given by the L-BFGS method (see [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF]), which is a quasi-Newton method building in some sense the "best" approximation of the Hessian at v n using only the information of the points v k and the gradients ∇f (v k ) for a fixed number of previous steps k = n, n -1, . . . , n -L + 1. The interest is that no matrix is stored, and there is a very efficient way to compute the matrix-vector product H -1 n • v using simple algebra. Therefore, we decided to implement a proximal L-BFGS method, which in our case reads:

The projected L-BFGS method.

(5.2)

v 0 given v n+1 = p Hn C (v n -τ n H-1 n ∇f (v n )),
where Hn is the approximate Hessian computed with the L-BFGS method with L steps and p Hn C is the projection on C with respect to the norm • Hn .

The algorithm to compute the matrix-vector product H-1 n • x is given in Section 5.3.

5.2.

Computing the projection. The difficulty lies in the computation of the projection, that is on the proximal operator. A box constraint on the variable is very easy to deal with, but here we are faced with box constraints on ∇ • v, that is on a linear operator applied to v. Moreover, we want to compute a projection with respect to a twisted scalar product •, • H , which adds some extra difficulty. For simplicity of notations, we rename a ε , b ε as a, b. By definition, finding the projection p H C (v 0 ) of v 0 amounts to solving the optimization problem:

(P) min v -v 0 2 H 2 : a ≤ ∇ • v ≤ b, v//∂Ω .
Note that, when one considers the divergence operator as an operator acting on vector fields defined on the whole R d (extended to 0 outside Ω), the Neumann boundary condition above exactly corresponds to the fact that the divergence has no mass on ∂Ω, which can be considered as included in the inequality constraints.

As a convex optimization, such a problem admits a dual problem, which we are going to use. We set

ψ(w) = 0 if a ≤ w ≤ b, +∞ if not, .
whose Legendre transform is

g(u) = ψ (u) = ˆbu + -ˆau -,
so that ψ = ψ = g . Let us derive formally the dual problem by an inf -sup exchange:

inf v//∂Ω v -v 0 2 H 2 : a ≤ ∇ • v ≤ b = inf v 1 2 v -v 0 2 H + ψ(∇ • v) = inf v 1 2 v -v 0 2 H + sup u -∇u, v -g(u) = inf v sup u 1 2 v -v 0 2 H -∇ H u, v H -g(u) ≥ sup u -g(u) + inf v 1 2 v -v 0 2 H -∇ H u, v H = -inf u g(u) + sup v ∇ H u, v H - 1 2 v -v 0 2 H = -inf u g(u) + ∇ H u 2 H 2 + ∇ H u, v 0 H = -inf u g(u) + 1 2 ˆH-1 ∇u • ∇u -ˆu(∇ • v 0 ).
Hence the dual problem reads:

(D) min u 1 2 ˆH-1 ∇u • ∇u -ˆu(∇ • v 0 ) f (u) + ˆbu + -ˆau - g(u)
.

The inf -sup interversion can be justified with equality via Fenchel's duality [Bre11, Chapter 1] in a well-chosen Banach space. Hence there is no duality gap:

min (P) + min (D) = 0.
As a consequence solving the dual problem provides a solution to the primal one. Indeed if u is optimal for (D) then v = v 0 + ∇ H u is optimal for (P). Now let us justify why it was interesting to pass by the resolution of a dual problem. Such a problem is of the form

(5.3) min u f (u) + g(u),
where f is smooth, with gradient ∇f (u) = -∇ • (H -1 ∇u) -∇ • v 0 , and g is proximable:

prox τ g (u)(x) =      u(x) -τ a if u(x) < τ a, 0 if τ a ≤ u(x) ≤ τ b, u(x) -τ b if u(x) > τ b.
We know how to compute the proximal operator and the gradient of f , since L-BFGS provides a simple method to compute the product H -1 x. Problems of the form (5.3) with f smooth (and computable gradient) and g proximable can be tackled with first-order methods such as the proximal gradient method described in the previous section (also called ISTA) or a fast proximal gradient method called FISTA, introduced in [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. We opted for the latter, which is a slight modification of the proximal gradient method using an intermediary point:

(FISTA)

u 0 ∈ H 1 (R d ),
ũn = u n + λ n (u n -u n-1 ),

u n+1 = prox τ g (ũ n -τ ∇f (ũ n )),
where λ n is given by some recursive formula (we refer to [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] for the details). It enjoys a theoretical and pratical rate of convergence which is higher than ISTA and which is that of the classical gradient method:

f (u n ) -f opt ≤ 2L f |u 0 -u opt | 2 (n + 1) 2 .
5.3. Algorithms and numerical experiments. Following the work of [START_REF] Oudet | A Modica-Mortola approximation for branched transport and applications[END_REF], we discretize our problem on a staggered grid : we divide the cube Q = [-1, 1] 2 into M 2 subcubes of side 2/M , the functions U are defined at the center of the small cubes, while the x component V x of a vector fields V is defined on the vertical edges of the grid and the y component V y on the horizontal edges of the grid. This is quite convenient to compute the discrete divergence of a vector field and the discrete gradient of a function.

• Unknowns: (V x i,j ) 1≤i≤M 1≤j≤M +1

, (V y i,j ) 1≤i≤M +1 1≤j≤M

, with

V x 1,j = V x M +1,j = V y i,1 = V y 1,M +1 = 0,
which means that V is parallel to the boundary. • Objective function:

F (V ) = ε -σ1 h 2 i,j N ( Vi,j ) σ + ε σ2 h 2 /2   i,j |∇ i,j V x | 2 + i,j |∇ i,j V y | 2   .
There are several definitions to give to make sense of F . First of all N is a smooth approximation of the norm, of the form N (x) = (|x| 2 + ε 2 s ) 1/2 for ε s small.

The discrete vector field Vi,j = ( V x i,j , V y i,j ) is an interpolation of (V x , V y ) defined at the centers of the cubes:

V x i,j = V x i,j + V x i+1,j 2 , V y i,j = V y i,j + V y i,j+1 2 , 1 ≤ i, j ≤ M.
Finally the discrete gradient is defined as usual by ∇ i,j V x = ((V x i,j+1 -V x i,j )/h, (V x i+1,j -V x i,j )/h), 1 ≤ i ≤ M -1, 1 ≤ j ≤ M, ∇ i,j V y = ((V y i,j+1 -V y i,j )/h, (V y i+1,j -V y i,j )/h), 1 ≤ j ≤ M -1, 1 ≤ i ≤ M.

We may now give the main algorithm and its sub-methods.

For the sake of completeness, we give a simple method to compute the L-BFGS multiplication H -1 X (see [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF][START_REF]Updating quasi-Newton matrices with limited storage[END_REF] for details).

Algorithm 3 L-BFGS multiplication H -1 X function MultiplyBFGS(X) G ← X for i = L, . . . , 1 do

s i ← r i Z i • G G ← G -s i Y i end for G ← (Z L • Y )/(Y L • Y L ) G for i = 1, . . . , L do t ← r i Y i • G G ← G + (s i -t)Z i end for return G end function
We present some numerical results obtained with ε s = 10 -4 , on a M × M grid with M = 201 and ε = 3h where h = 2/M , the code being written in Julia. We have started with random initial values for V and a smooth approximation δ of the Dirac δ 0 . After some days of computation on a standard laptop, one gets the following shapes and underlying networks.

With no surprise, the shape for α = 0.85 is rounder than those obtained for α = 0.55 and α = 0.65. These two are quite similar, but a simple zoom shows that the one with the smallest value of α is a slightly more irregular than the other. The corresponding irrigation networks are also coherent with the expected results: the branches have larger multiplicity (close to the origin) for smaller α. 

  y) dy = ˆA+ (z(y) -zr (x)) dy + ˆA-(z r (x) -z(y)) dy = ˆAr(x) |z(y) -zr (x)| dy.

Theorem 3. 7 (

 7 Hölder continuity). The function z is β-Hölder continuous on A. More precisely: ∀x, y ∈ A, |z(y) -z(x)| ≤ C|y -x| β , for some constant C = C(α, d). Proof. By Lemma 3.5 and Lemma 3.6, |z(y) -z(x)| ≤ |z(y) -z |y-x| (y)| + |z |y-x| (y) -z |y-x| (x)| + |z(y) -z |y-x| (y)| ≤ 3C|y -x| β .

Definition 4. 1 (

 1 Minkowski dimension). We define the upper Minkowski dimension of X by dim M (X) = lim sup ε→0 log(N ε (X)) -log ε , and the lower Minkowski dimension by dim M (X) = lim inf ε→0 log(N ε (X)) -log ε .

( a )Figure 1 .

 a1 Figure 1. Algorithm output for different α's after ∼ 15000-25000 iterations (e stands for the computed optimal value, which is an approximation of e α , and M for the number of discretization points on each side of the domain).
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Algorithm 1 Proximal L-BFGS for F Data: tolerance tol, initial vector field V 0 , step τ 0 , source δ V ← V 0 , U ← U 0 compute error while error > tol do

The update step for L-BFGS data consists in storing in Y, Z, r the points and gradients of the L previous steps, so that at step n:

for all k = 0, . . . , L -1, and r k = 1/(Y k • Z k ) for all k = 0, . . . , L -1. Notice here that we do a simple backtracking line search by reducing the stepsize τ until the energy has decreased, for example until it has sufficiently decreased and satisfies the Armijo rule. Also, notice that the potential U computed at step n is used at the next step as initial data ; this trick extensively speeds up the computation of the projection. Finally, we took as error measurement some relative difference between two consecutive steps. Now, as stated in Section 5.2, the projection on C with respect to • H is computed via the FISTA method, as follows:

The Prox function is just the proximal operator associated with the discrete counterpart of g : u → ´bu + -´au -where a = δ -1, b = δ. Thus P = Prox(U, δ, τ ) is defined by:
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