Improving Chairlift Security with Deep Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Improving Chairlift Security with Deep Learning

Kevin Bascol
Rémi Emonet
Elisa Fromont
Raluca Debusschere
  • Fonction : Auteur

Résumé

This paper shows how state-of-the-art deep learning methods can be combined to successfully tackle a new classification task related to chairlift security using visual information. In particular, we show that with an effective architecture and some domain adaptation components, we can learn an end-to-end model that could be deployed in ski resorts to improve the security of chairlift passengers. Our experiments show that our method gives better results than already deployed hand-tuned systems when using all the available data and very promising results on new unseen chairlifts.
Fichier principal
Vignette du fichier
ida2017.pdf (814.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01581392 , version 1 (06-09-2017)

Identifiants

  • HAL Id : hal-01581392 , version 1

Citer

Kevin Bascol, Rémi Emonet, Elisa Fromont, Raluca Debusschere. Improving Chairlift Security with Deep Learning. International Symposium on Intelligent Data Analysis (IDA 2017), Oct 2017, Londres, United Kingdom. ⟨hal-01581392⟩
113 Consultations
355 Téléchargements

Partager

More