N

HAL

open science

Improving Chairlift Security with Deep Learning

Kevin Bascol, Rémi Emonet, Elisa Fromont, Raluca Debusschere

» To cite this version:

Kevin Bascol, Rémi Emonet, Elisa Fromont, Raluca Debusschere. Improving Chairlift Security with
Deep Learning. International Symposium on Intelligent Data Analysis (IDA 2017), Oct 2017, Londres,

United Kingdom. hal-01581392

HAL Id: hal-01581392
https://hal.science/hal-01581392

Submitted on 6 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01581392
https://hal.archives-ouvertes.fr

Improving Chairlift Security with Deep Learning

Kevin Bascol!? & Rémi Emonet! & Elisa Fromont ! & Raluca Debusschere?

! Univ Lyon, UJM, Lab Hubert Curien, CNRS UMR 5516, F-42000 St-Etienne, Fr
2 Bluecime inc., 445 rue Lavoisier, 38330 Montbonnot Saint Martin, France

Abstract. This paper shows how state-of-the-art deep learning methods
can be combined to successfully tackle a new classification task related
to chairlift security using visual information. In particular, we show that
with an effective architecture and some domain adaptation components,
we can learn an end-to-end model that could be deployed in ski resorts
to improve the security of chairlift passengers. Our experiments show
that our method gives better results than already deployed hand-tuned
systems when using all the available data and very promising results on
new unseen chairlifts.

Keywords: Deep learning, Convolutional neural networks, Image Clas-
sification, Domain adaptation.

1 Introduction

Ski resorts are all equipped with different and numerous chair and ski-lifts. To
ensure the security at each boarding terminal, one person (at least) is in charge
of continuously monitoring the lift traffic and ensuring safe boarding for all its
passengers. Possible hazardous situations include: improper seating, restraining
bar not pulled down, loss of a gliding equipment, unaccompanied child, etc.
On average, all these situations lead each year to 20 serious injuries in France
alone, out of which more than a third occur during or just after boarding the
lift. Thus the chairlift administrators are in search of viable solutions to prevent
the possible accidents. All the chairs could be equipped with sensors that could
monitor the number of persons on a given chair, whether they are well seated,
whether the position of the restraining bar (or security railing) is correct a few
seconds after leaving the boarding station (which is very important to prevent
falls), whether a child is not alone on the chair, whether the skiers have not lost
a ski or a snowboard etc. Such sensors should trigger an alarm that would stop
or slow down the chairlift if a particular anomaly is detected. However, in the
extreme weather conditions that ski-resorts can face, small mechanical sensors
are subject to wear and often prone to failure, thus other more robust solutions
are required.

The work presented in this article is made in collaboration with a start-up
called Bluecime, which has installed video cameras filming the boarding plat-
forms in several ski-resorts. Each of these cameras is linked to a computer that
processes the video stream in real time. The company has developed a software



2 Bascol et. al.

(called STVAO) that takes as input the video of a running chairlift, focuses on one
moving chair and automatically (using signal processing techniques) detects if
the security railing is up or down a few seconds after boarding. Since its creation,
the company has successfully shown that video cameras represent a reliable so-
lution which needs almost no maintenance. Besides, they have proved that the
real-time image processing of the captured images leads to better results for the
cited tasks than mechanical sensors, even in extreme weather conditions (e.g.
the artifacts created by the presence of snow flakes are compensated by various
pre-processing methods applied to the input images). If the results obtained by
the company are already very good, they are currently limited to one particu-
lar task (triggering an alarm if the restraining bar position is not as expected).
Moreover, their system needs to be calibrated on a per-lift basis, which is time
consuming and makes it more difficult to scale the system to a very large number
of lifts.

We believe that intelligent data analysis techniques and, in particular, deep
learning, can be used to solve this problem in a more precise and adaptable
way. We explain in this article how state-of-the-art deep learning architectures
designed for general image classification tasks as well as dedicated domain adap-
tation methods can be used to improve and generalize the results obtained by
the company.

2 Background on Neural Networks and Related Work

Deep learning is nowadays almost a synonym for learning with deep (more than
2 layers) convolutional neural networks (CNN; see [1] for some insights on neu-
ral networks). This learning technique has become tremendously popular since
2012 when a deep architecture, called ALEXNET, proposed by A. Krizhevsky et
al. [7] was able to win the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) with an outstanding improvement of the classification results over the
existing systems: the error rate was 15% compared to 25% for the next ranked
team. Since then, countless different architectures have shown excellent perfor-
mance in many domains such as computer vision, natural language processing
or speech recognition [4].

The amount of labeled data available, the systematic use of convolutions, the
better optimization techniques and the advances in manufacturing graphical pro-
cessing units (GPU) have contributed to this success. However, deep networks
were supposed to suffer from (at least) three curses. 1) The deeper the network,
the more difficult it is to update the weights of the first layers (the ones closer to
the input): deep networks are subject to vanishing and exploding gradient that
leads to convergence problems. 2) The bigger the network, the more weights
need to be learned. In statistical machine learning, it is well known that more
complex models require more training examples to avoid overfitting phenomena
and guarantee relatively good test accuracy. 3) Neural network training aims at
minimizing a loss which is a measure of the difference between the computed
output of the network and the target. The computed outputs depend on (i) the



Improving Chairlift Security with Deep Learning 3

inputs, (ii) all the weights of the network and (iii) the non linear activation func-
tions that are applied at each layer of the network. The function to minimize is
thus high-dimensional and non-convex. As the minimization process is usually
achieved using stochastic gradient descent and back-propagation, it can easily
get trapped in local optimum.

In this paper, we are interested in deep learning approaches developed for
image classification. In this context, the use of convolutions (i.e., a reduced
number and a better configuration of the weights) and the huge size of the current
image datasets ([2,8]) partially solved the second and third curses mentioned
above. In the following, we will show other architectures and learning “tricks”
that practically alleviate all the remaining problems with deep learning for image
classification.

Learning tricks. The first improvement concerns the initialization of the weights.
It was shown [1] that image classification tasks could all benefit from a pre-
training step on a large dataset such as ImageNet [2]. The ImageNet dataset
contains images grouped in 1000 different classes. Practically, the output of a
network trained on ImageNet consists in a 1000-D vector which gives the proba-
bility for an input image to be of each of the 1000 classes. To use such a network
on a new task (with much fewer and different target classes), the idea is to “cut”
the last layer(s) of the pre-trained network. Only the convolutional part is kept
and its output is considered as a generic image descriptor. A new network can be
built from this pre-trained generic feature extractor by training new additional
“classification” layers (usually fully connected). The whole network can then be
further fine-tuned, i.e., trained end-to-end on the new problem of interest. This
procedure is called “transfer learning”.

The second improvement is the batch normalization [6]. This simple yet very
effective idea consists in normalizing the activation outputs of each layer of the
network according to the current input batch. Its main benefit is to reduce the
internal covariate shift, which corresponds to the amplification of small changes
in the input distribution after each layer, and so creates high perturbations in
the inputs of the deepest layers.

CNN architectures. K. Simonyan et al. [9] created VGGNET 16 and VGGNET 19
composed of respectively 13 and 16 convolutional layers followed by 3 fully-
connected layers. As for the previously mentioned ALEXNET, the spatial dimen-
sions were reduced with max-pooling layers, the inputs of the convolutions being
typically padded so as to keep the spatial size. However, each time the spatial
dimensions were divided by two, the number of filters in the next layers was
doubled to compensate for the information loss. With this method, Simonyan et
al. managed to obtain an error rate of 7% at ILSVRC 2014.

Following these results, several other techniques have been designed to be
able to train deeper networks. For instance, He et. al. [5] introduced the concept
of residual mapping which allowed them to create a network with 18 to 152
convolutional layers called a Residual Network (ResNet). Their architecture is
divided into blocks composed of 2 or 3 convolutional layers (depending on the



4 Bascol et. al.

total depth of the network). At the end of a block, its input is added to the out-
put of the layers. This sum of an identity mapping with a “residual mapping”
has proven effective at overcoming the vanishing gradient phenomenon during
the back-propagation phase and allows to train very deep networks. An example
of such blocks is shown in Figure 2. Using residual blocks, the network is learned
faster and with better performance. At ILSVRC 2015, ResNet 152 showed the
best performance with less than 4% of error rate. They also used batch normal-
ization [6] on the first (or first two) layer(s) of each residual block. We will base
our system on this architecture.

Domain adaptation. Some applications require to be able to learn a model on
some data (e.g. images of cats) called the source domain and deploy it on similar
but different data (images of tigers) called the target domain. This well-known
machine learning problem is called Domain Adaptation. Many interesting ap-
proaches have been proposed in deep learning to tackle this problem such as
the one from Ganin et al. [3]. Their idea (as shown in Figure 1) is to train
two networks that share the same first (convolutional) layers called the ”feature
extractor”. The first network is dedicated to the classification task on one par-
ticular domain. The second network aims at predicting the domain of an input
example. Note that to train this second network, the examples of the target do-
main do not need to be labeled (and are not in [3]). The only information needed
to train the second network is whether an example belongs to the source or to
the target domain. The two networks are trained in an adversarial way according
to the shared layers (using a mechanism called gradient reversal on the second
network optimization). As a consequence, the shared features of the networks
are discriminative for the classification task as well as domain invariant.

3 Proposed Deep ResNet with Domain Adaptation

Based on the state-of-the art study presented in Section 2, we propose an image
classification architecture using domain adaptation and a convolutional residual
network pre-trained on ImageNet. This architecture is shown in Figure 1 and is
divided into three parts: 1) a feature extractor which learns a new image repre-
sentation; 2) a classifier which predicts the class of an image, and 3) a domain
discriminator which ensures that the feature extractor is domain invariant, to
improve classification accuracy on unseen data.

3.1 Network Architecture

Our network inputs are RGB images of size 224 x 224 that can be viewed as
three-dimensional tensors (two spatial dimensions and one dimension for the
RGB channels). After some trial and error, we decided to use the ResNet archi-
tecture presented in the previous section with 50 layers and pre-trained on the
ImageNet dataset (see the ”learning tricks”). Networks with more layers gave
a slightly better accuracy but were longer to train and the biggest ones (with



Improving Chairlift Security with Deep Learning 5

Feature Extractor Classifier

’ N

4 \
1
1

.

FC 2048x3
Softmax

GROUP 1

4 blocks

GROUP 2

Domain

(7x7x3 (s2))
112x112x64
56x56x64
28x28x512
14x14x1024

o] o]
< <
(=} (=}
o~ N
X X
S —
X X
~ —

GROUP 0
3 blocks

<

64 conv

PO

PO

-

i
|
|
\
0
1
1

Softmax

FC 2048x1024
FC 1024x16

9

scriminator

Fig. 1. The proposed ResNet architecture with domain adaptation, for a 3-class clas-
sification problem with 16 domains (chairlifts).

GROUP 3

1024 conv
(1x1x2048 (s2))

<
N ©
5 g
X = ]
5 T Q) >o D o >~ D o >~ £
X =2 == BT 23zl 28 28 &9 x
i 69 ow~ S 62 © S 62 © S i
— own n_oun n_oun
OdmOdm % OQNm Ox X OQNmOXm - %
NS N 0o NS am Qo NS M Qo
% =X ¥x % HX ¥x s e X
nX M o4 X A Od X M Od
= 1Y S° n+H nl ST n+ 0l QT
2 X =4 <
(e

Fig. 2. Details of the last group of layers in our architecture (see Fig. 1), which is
composed of three residual blocks and different convolution filters.

more than 101 layers) did not allow us to process test images in real time on
a CPU. The 50 layers architecture (shown in Fig. 1) gave us a good trade-off
between computational efficiency and accuracy. This network is composed of 49
convolutional layers and only one fully connected layer at the output of the net-
work. This last layer is preceded by an average pooling layer which reduces the
size of the feature maps to a 1D-vector. The last layer of the original ResNet 50
architecture was changed to fit our 3-classes classification problem (instead of
the 1000 classes of the ImageNet classification problem). We used our chairlift
dataset to train this last layer and fine-tune the entire network.

In the feature extractor, each group is composed of a set of blocks. Each
block is composed of three layers: a 1 x 1 convolution that acts as a learnable
dimensionality reduction step, a 3x 3 convolution that extracts some features and
a 1 x 1 convolution that restores the dimensionality. As explained in Section 2,
we use the residual connections between each block to ease the training phase.

The first block of each group contains a 3 x 3 convolution with a stride of 2
which reduces the spatial size by a factor two. To compute the block output with
the sum operator, the input needs to have the same dimensions as the output.



6 Bascol et. al.

Therefore, a 1 x 1 convolutional layer with a stride of 2 is added to reduce
the spatial size and also to match the number of feature maps which changes
according to the group. In Figure 2, we show in more details the last group of
layers in the feature extractor.

3.2 Objective Function and Training

Different losses are classically used in deep learning. The best known for image
classification is the cross-entropy [4]. After experimenting with different losses,
we decided to use the more robust multi-class hinge loss (eq. 1) commonly used
in SVM:

b

1 1 i i

loss(W, X, t) = 3 E m g maz(0, 0., — oy + m) (1)
i=1 71 cecn ey

where W is the set of all the parameters in the network, X is the subset
of the input dataset (mini-batch) given to the network during a forward pass,
b is the mini-batch size, C' is the set of classes, and ¢ is the ground-truth label
corresponding to each example of the mini-batch. The margin m can be seen
as the minimal “distance” required between the computed probability of the
prediction of the target class (o}) and the other classes (0'), since the loss value
is equal to 0 when of > ol + m. This loss presents several advantages: (i) it is
defined on p(z) = 0 which makes it more robust than the cross-entropy; (ii) it
does not penalize the weights on well classified examples which could speed up
the convergence of the network; (iii) the slope and the margin of the function
can be easily changed to give a custom weight to the different type of errors
(false positive, false negative). This last advantage will be explored in our future
work.

To update the weights of the network, a stochastic gradient descent algorithm
is applied on the loss function. The weight update rule is given by:

Oloss(W (1), X, t) @)
oW (1)
where 7 is the current iteration and 7 is the learning rate which needs to be
tuned.

W(r+1)=W(r) -

4 Experiments

SIVAO, the current system deployed by Bluecime (introduced in Section 1), can
be decomposed into two parts: a vehicle detector and a situation classifier. The
purpose of the vehicle detector is to determine the vehicle position, scale, and
orientation so as to track it each time it passes in front of the camera. The
situation classifier detects different vehicle parts with respect to the position
given by the vehicle detector. Its purpose is to detect whether the vehicle is
empty or not and also to infer the position of the restraining bar, so that it



Improving Chairlift Security with Deep Learning 7

Fig. 3. Training images from three different chairlifts (labeled from left to right Empty,
Safe, and Unsafe)

can classify a frame into Safe or Unsafe. A detection zone is pre-configured
and, at the end of the zone, the system computes a final decision based on
a configured number of frame-level decisions made during the tracking of the
vehicle. Depending on this decision (predicted label), an alarm is triggered or
not.

Our proposed network could replace the situation classifier to enhance the
classification performance while keeping the efficient vehicle detector designed
by Bluecime. In the following, we evaluate the performance of our deep learning
approach applied on images provided by the vision-based vehicle detector.

4.1 Chairlift Dataset

Bluecime has already equipped 16 chairlifts (here named A, B, ...) from 3 dif-
ferent ski-resorts with the system presented in Section 1. To build the dataset,
each time a vehicle (chair) passes in front of the camera, we use SIVAO to
record 2 images that are approximately centered on the chair: one far from and
one close to the camera. Examples of such images are given in Figure 3. A total
of 50000 such images have been recorded and manually labeled in 3 categories:
Empty, Safe and Unsafe. In the first case (Empty), the vehicle does not carry
any passengers. The system should not trigger an alarm in this situation. In
the second case (Safe), the vehicle carries passengers who closed the restraining
bar completely. In the last case (Unsafe), the vehicle carries passengers and the
restraining bar is slightly or completely open.

The dataset is unbalanced with respect to the classes: around 28 000 images
are labeled Empty, 18000 are labeled Safe, and 4000 are labeled Unsafe. The
dataset is also unbalanced with respect to the different chairlifts (which will
be called domains in the following): the least represented chairlift has 1800
examples, whereas the most represented one has 6 200 examples.

As they were designed by different manufacturers at different times, all the
16 chairs in the dataset are different, though some are similar. There are even
some unique cases, for instance a chairlift having a glass bubble (chairlift D) as
a second protection, or another whose vehicles do not have a complete frame
(see Fig. 3, left).



8 Bascol et. al.

4.2 Evaluation Procedure

SIVAO is a commercialized product that aims at improving the work of chairlift
operators. We use its current performance as an indication of the minimal result
requirements for an acceptable quality of service that we aim to surpass with
our automatic system. To compare SIVAO and our method, the results of our
multiclass approach are cast into a binary classification problem. To do that, we
merge the classes Empty and Safe as Negative, and the class Unsafe becomes
Positive.

To study the behavior of our approach, we considered six different experi-
mental settings:

1. OOC (”Only One Chairlift”). 16 independent experiments are averaged:
each chairlift is considered independently (as it is done by SIVAO), thus
the training (resp. the test) set contains 85% (resp. 15%) of the images of a
single chairlift. Obviously, with only one chairlift per experiment, the domain
adaptation component is not used on this setting.

2. ALL One experiment is performed using only the features extractor and the
classifier, with 85% of all the available images (from all the chairlifts) for
training and 15% for testing. The same experiment is done 16 times with 16
randomly chosen training/test sets and the results are averaged in table 1.

3. ALL DA (“Domain Adaptation”) same as ALL but using the domain adap-
tation component described in Section 2.

4. LOCO ("Leave One Chairlift Out”) 16 experiments are averaged: in each,
we use only the feature extractor and the classifier, with the images of all
the chairlifts but one (thus 15) mixed in the training set and all the images
of the remaining chairlift as test set.

5. LOCO DA- Same as LOCO but with domain adaptation using no examples
from the target chairlift.

6. LOCO DA Same as LOCO but with classical domain adaptation where
some unlabeled examples of the target chairlift are used by the domain adap-
tation component.

In setting 1 (OOC), due to time constraints and to be closer to a realistic
setting, we do not tune the hyper-parameters for each domain but we use one
single hyper parameter setting (given in the next section) for all the chairlifts.
In this setting, we expect the network to quickly overfit our data and also to be
penalized by the lack of examples especially for the least represented chairlifts.

In settings 2 and 3 (ALL and ALL DA), we train our network using all
the training data available. We only build one model for all the chairlifts which
makes this setting easier to deploy in practice. However, the hyper-parameters of
the system are also global which may harm the final performance. These settings
could be used with the current cameras installed by the company but do not
evaluate the real ability of our system to work on new chairlifts.

Settings 4 to 6 (LOCO, LOCO DA-, and LOCO DA) really show the poten-
tial of our approach. Ideally, our method should show good enough performance
on these settings to allow Bluecime to deploy their system equipped with this



Improving Chairlift Security with Deep Learning 9

model on any new chairlift with no manual labeling. In these settings, we ex-
pect a performance drop compared to the OOC or ALL settings because of the
variability of the different domains.

To evaluate their system, the company relies on numerous measures. Among
these, 4 statistical measures assess the overall performance of the system: recall,
precision, F-measure, and accuracy. Unsafe examples are considered positive
(the alarm has to be triggered), and safe examples negative (no alarm needed),
thus the classes Empty and Safe are both considered negative. The recall gives
the proportion of examples correctly detected positive among all the examples
expected positive. In our case, that is the ability of the system to trigger an alarm
in unsafe situations. The precision gives the proportion of examples correctly
detected positive among all the examples detected positive. Thus it indicates
the ability of the system to avoid useless alarms. The F-measure (harmonic
mean between precision and recall) and the accuracy (percentage of correct
predictions) give a more global view on the performance of the system. In the
following, we report these 4 measures.

4.3 Training Details

In our experiments, we use mini-batches of 84 images (guided by GPU memory
limitations), enforcing a balance over classes and domains: we randomly select a
chairlift, then randomly select a class, then randomly select an example. We tune
our hyper-parameters using a grid search. In all the reported experiments, the
learning rate is set to 1075 (with an ADAM optimizer), the hinge loss margin to
0.33 for the domain adaptation component (with the reversal layer) and to 0.01
for the domain discriminator. The gradient reversal layer used for the domain
adaptation induces a hyper-parameter 7 set to 10 as defined by Ganin et al. [3].

Our dataset is composed of images of size 237 x 237. When an image is
loaded, we randomly select a 224 x 224 crop in the image to fit the size of the
original ResNet architecture. To maximally exploit the small number of examples
available in the positive class, we decided not to use a validation set and to stop
the learning process after a constant (high enough) number of iterations set
to 12000. Training our model for 12000 iterations takes about 4 to 5 hours.
The classification of one image is done in approximately 15ms which allows our
method to be used in real time.

4.4 Experimental Results

In Table 1, we present the results on all the datasets for all the experimental set-
tings. The first line of the table gives the performance of the current hand-tuned
method developed by Bluecime. In the OOC setting (the closest to what the
company is currently doing), the proposed network brings a 7 point improve-
ment in precision, recall and F-measure and +1pt in accuracy. This validates
the relevance for the company of the proposed machine learning-based method.
With the ALL setting, a 5pts gain in F-measure and 1pt gain in accuracy are



10 Bascol et. al.

Experimentl F-measure l Precision L Recall l Accuracy
Bluecime 84.72 87.88 81.78 97.40
00C 91.70 94.64 88.94 98.68
ALL 89.47 93.49 85.78 98.33
ALL DA 89.71 93.88 85.89 98.36
LOCO 76.23 76.71 75.75 96.07
LOCO DA- 72.36 70.84 73.93 95.30
LOCO DA 84.24 82.76 85,77 97.33

Table 1. Performance results of our deep learning system for the three main group
of settings (OOC, ALL, LOCO) compared to the hand-tuned existing system of the
Bluecime company.

observed. While the gain is smaller than with OOC, the one-model-fits-all na-
ture of ALL makes it a very attractive solution from an industrial standpoint.
Adding domain adaptation (ALL DA) has a very limited impact which can be
explained by the fact that all the domains are already in the training set.

As expected, during the LOCO experiment, performance losses occur for
all the measures, with -8pts of F-measure and -1pts of accuracy. In this setting,
performance is too low for industrial deployment. However, adding domain adap-
tation (LOCO DA) brings back the performance to a level comparable with the
Bluecime system, with -0.5pts of F-measure and a similar accuracy. These re-
sults emphasize that domain adaptation is relevant and allows to create models
that have competitive results even on a chairlift with non-labeled examples.

In the case when we do not have any examples of a specific chairlift (e.g.,
launching the system immediately after its installation) adding domain adapta-
tion (LOCO DA-) causes a 4pts loss of F-measure (compared to plain LOCO).
This behavior may be unexpected but it has an intuitive explanation: domain
adaptation encourages the learning of features that are domain-invariant but
also specializes these features for the domains it has seen, causing a detrimental
effect on an unseen chairlifts. These results show that in a LOCO setting, domain
adaptation should be used only if we can retrain the model using new unlabeled
images (setting LOCO DA), and not if the goal is to produce an off-the-shelf
model.

In the Table 2, we focus on 4 different chairlifts in order to illustrate how
performance varies in function of the specificity of each chair model.

Chairlift A — In both settings, results are better that the average with +4pts
(O0C) and +9pts (LOCO) of F-measure. This gain in performance is possible,
for OOC, thanks to a good balance in the classes of the images of this chairlift,
and for LOCO, thanks to the chairlift configuration similar to several other ones.

Chairlift B— OOC shows a slightly lower performance with -3pts of F-measure
but +0.5pts of accuracy. This is explained by the over-representation of the Safe
class (4600 images versus 340 for the Unsafe class). With the LOCO setting, we



Improving Chairlift Security with Deep Learning 11

Chairliftl Size LExperimentLF-measurelPrecisionL Recall LAccuracy
A 9849 00C 95.68 97.08 94.33 97.06
LOCO DA 92.98 93.56 92.40 95.21

. 1. 2 .

B 6306 00C 88.89 91.67 86.27 98.83
LOCO DA 72.19 66.50 78.95 96.70
C 1822 00C 76.92 78.95 75.00 96.79
LOCO DA 77.78 83.05 73.13 96.93
D 9736 00C 85.71 100.00 75.00 99.76
LOCO DA 82.76 85.71 80.00 99.63
Overall Average 00C 91.70 94.64 88.94 98.68
(Table 1) LOCO DA 84.24 82.76 85,77 97.33

Table 2. Comparison of OOC and LOCO experiments on 4 specific chairlifts

observe a considerable performance drop with -12pts of F-measure. This poor
performance is mostly due to the sun which casts different shadows depending of
the time of the day. Besides, a high number of images present flares decreasing
the image quality.

Chairlift C — OOC has a F-measure of 15pts below the overall result. It
is even outperformed by LOCO (+1pts of F-measure and +0.1 of accuracy).
Chairlift C is the domain with the fewest number of examples (around 1800).
This number is probably not sufficient to train our deep architecture. In the
LOCO experiment, the poor performance is mostly due to the shadow cast by
the chairlift tower in the afternoon.

Chairlift D — This is the only chairlift with a glass bubble, and also the only
one which has the restraining bar (and also the bubble) closed on Empty images.
This implies that, even if its data is unbalanced (2000 Empty, 670 Safe, and 30
Unsafe), on the OOC setting, the network has perfect precision and retrieves 3
of the 4 positives examples, as only 15% of the 30 Unsafe are used for testing.
The F-measure is 6pts lower than the average result, yet it is highly impacted
by this lack of positive testing examples. In LOCO, we could have expected
an important performance drop considering the chairlift unique features (the
bubble), but when the restraining bar is open, the bubble is open too, and so
the configuration in that case is not dramatically different to other chairlifts.
This explains why the loss of F-measure is limited to 2pts.

These results underline the different factors limiting the performance of the
proposed system. When training and testing is done on the same domain, we
need a consequent amount of data to reach good performances. When testing
on a new domain, if this domain is very different from the others, we can expect
worse results with DA since the domain adaptation will not be able to bridge
the domain gap.

For Bluecime, collecting data is easy but annotating them is not because
of human resource limitations. Besides, several new chairlifts are equipped each



12 Bascol et. al.

season. Thus the LOCO setting with DA seems the most promising one in a
first deployment phase, since it avoids the need for numerous annotations for
the new chairlift. This setting also provides a basis for an active learning system
that would limit the number of needed annotations. In a second phase, with
enough annotated data, the OOC setting could be used for each resort.

5 Conclusion

We have presented an end-to-end deep learning system that can improve the
security on chairlifts using visual information. Leveraging domain adaptation
techniques, the model is able to achieve competitive performance even with
(new) chairlifts for which no labeled data is available. Overall, this ability to
generalize, its competitive accuracy and its operation in real-time make this
system well suited for industrial deployment.

Acknowledgment
The authors acknowledge the support from the SoLStiCe project ANR-13-BS02-0002-01.

References

1. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the
details: Delving deep into convolutional nets. In: BMVC (2014) 3

2. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. In: CVPR (2009) 3

3. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks.
JMLR (2016) 4, 9

4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org 2, 6

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Computer Vision and Pattern Recognition (CVPR) (2016) 3

6. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: ICML. pp. 448-456 (2015) 3, 4

7. Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: NIPS (2012) 2

8. Lin, T., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Dollér, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: 13th European
Conference in Computer Vision - ECCV (2014) 3

9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014) 3


http://www.deeplearningbook.org
http://www.deeplearningbook.org

