On the Cohomology of the Stover Surface - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

On the Cohomology of the Stover Surface

Résumé

We study a surface discovered by Stover which is the surface with minimal Euler number and maximal automorphism group among smooth arithmetic ball quotient surfaces. We study the natural map $\wedge^{2}H^{1}(S,\mathbb{C})\to H^{2}(S,\mathbb{C})$ and we discuss the problem related to the so-called Lagrangian surfaces. We obtain that this surface $S$ has maximal Picard number and has no higher genus fibrations. We compute that its Albanese variety $A$ is isomorphic to $(\mathbb{C}/\mathbb{Z}[\alpha])^{7}$, for $\alpha=e^{2i\pi/3}$.
Fichier principal
Vignette du fichier
1410.8657.pdf (179.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01579462 , version 1 (16-04-2024)

Identifiants

Citer

Amir Džambić, Xavier Roulleau. On the Cohomology of the Stover Surface. 2014. ⟨hal-01579462⟩
96 Consultations
17 Téléchargements

Altmetric

Partager

More