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ON THE COHOMOLOGY OF STOVER SURFACE

AMIR DŽAMBIĆ, XAVIER ROULLEAU

Abstract. We study a surface discovered by Stover which is the surface with minimal
Euler number and maximal automorphism group among smooth arithmetic ball quotient
surfaces. We study the natural map ∧

2H1(S,C) → H2(S,C) and we discuss the problem
related to the so-called Lagrangian surfaces. We obtain that this surface S has maximal
Picard number and has no higher genus fibrations. We compute that its Albanese variety
A is isomorphic to (C/Z[α])7, for α = e2iπ/3.

1. Introduction

By the recent work of M. Stover [14], the number of automorphisms of a smooth compact
arithmetic ball quotient surface X = Γ\B2 is bounded by 288 · e(X), where e(X) denotes the
topological Euler number of X .
Furthermore, Stover characterizes the arithmetic ball quotient surfaces X whose automor-
phism groups attain this bound, which by analogy with Hurwitz curves, he calls Hurwitz ball
quotients ; all such surfaces are finite Galois coverings of the Deligne-Mostow orbifold Λ\B2

corresponding to the quintuple (2/12, 2/12, 2/12, 7/12, 11/12) (see [12, 14]).
Stover constructs also a Hurwitz ball quotient S with Euler number e(S) = 63 and automor-
phism group Aut(S) isomorphic to U3(3) × Z/3Z, of order 18144 = 25347. He shows that S
is the unique Hurwitz ball quotient with Euler number e = 63, and moreover that e = 63
is the minimal possible value for the Euler number of a Hurwitz ball quotient. Having this
property the surface S can be seen as the 2-dimensional analog of the Klein’s quartic which
is the unique curve uniformized by the ball B1 with minimal genus and maximal possible
automorphism group.
Our aim is to study more closely the cohomology of this particular surface S, which we will
call Stover surface in the following. This surface S has the following numerical invariants
(see [14]):

e(S) H1(S,Z) q pg = h2,0 h1,1 b2(S)
63 Z14 7 27 35 89

Let V be a vector space. Let us recall that a 2-vector w ∈ ∧2V has rank 1 or is decomposable
if there are vectors w1, w2 ∈ V with w = w1 ∧w2. A vector w ∈ ∧2V has rank 2 if there exist
linearly independent vectors wi ∈ V, i = 1, .., 4 such that w = w1 ∧ w2 + w3 ∧ w4.

Let B be an Abelian fourfold and let p : S → B be a map such that p(S) generates B. We
say that S is Lagrangian with respect to p if there exists a basis w1, . . . , w4 of p∗H0(B,ΩB)
such that the rank 2 vector w = w1 ∧ w2 + w3 ∧ w4 is in the kernel of the natural map
φ2,0 : ∧2H0(S,ΩS) → H0(S,KS).

Theorem 1. The surface S has maximal Picard number. The natural map

φ1,1 : H0(S,ΩS)⊗H1(S,OS) → H1(S,ΩS)

is surjective with a 14-dimensional kernel. The kernel of the map

φ2,0 : ∧2H0(S,ΩS) → H0(S,KS)
1
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is 7-dimensional and contains no decomposable elements. The set of rank 2 vectors in
Ker(φ2,0) is a quadric hypersurface.
There exists an infinite number (up to isogeny) of maps p : S → B (where B is an Abelian
fourfold) such that S is Lagrangian with respect to p.
The Albanese variety of S is isomorphic to (C/Z[α])7, for α = e2iπ/3.

By the Castelnuovo - De Franchis Theorem, the fact that there are no decomposable
elements in ∧2H0(S,ΩS) means that S has no fibration f : S → C onto a curve of genus
g > 1. Moreover Theorem 1 implies that S has the remarkable feature that both maps

φ2,0 : ∧2H1,0(S) → H2,0(S)
φ1,1 : H1,0(S)⊗H0,1(S) → H1,1(S)

have a non-trivial kernel. With Schoen surfaces (see [10, Remark 2.6]), this is the second
example of surfaces enjoying such properties. For more on this subject, see e.g. [1, 5, 2, 8, 9].

We obtain these results using Sullivan’s theory on the second lower quotient of the funda-
mental group π1(S) of S (see [4]).

For the motivation and a historic account of surfaces with maximal Picard number we
refer to [3].

Aknowledgements We are grateful to Marston Conder and Derek Holt for their help in
the computations of Theorem 3.

2. The Second lower central quotient of the fundamental group of S

Let Π := π1(X) be the fundamental group of a manifold X . The group H1(X,Z) is the
abelianization of Π: H1(X,Z) = Π/∆ where ∆ := [Π,Π] is the derived subgroup of Π, that
is, the subgroup generated by all elements [h, g] = g−1h−1gh, h, g ∈ Π.
The second group in the lower central series [∆,Π] is the group generated by commutators
[h, g], with h ∈ ∆, g ∈ Π. It is a normal subgroup of the commutator group ∆. According to
[4], we have the following results:

Proposition 2. (Sullivan) Let X be a compact connected Kähler manifold. There exists an
exact sequence

0 → Hom(∆/[∆,Π],R) → ∧2H1(X,R) → H2(X,R).

(Beauville) Suppose H1(X,Z) is torsion free. Then the group ∆/[∆,Π] is canonically iso-
morphic to the cokernel of the map

µ : H2(X,Z) → Alt2(H1(X,Z)) given by µ(σ)(a, b) = σ ∩ (a ∧ b),

where Alt2(H1(X,Z)) is the group of skew-symmetric integral bilinear forms on H1(X,Z).

In the case of the Stover surface, computer calculations give us the following result:

Theorem 3. Let Π = π1(S) be the fundamental group of the Stover surface and ∆ = [Π,Π].
The group ∆/[∆,Π] is isomorphic to Z/4Z× Z28.

Proof. By the construction of S [14], the fundamental group Π is isomorphic to the kernel
ker(ϕ) of the unique epimorphism ϕ : Λ −→ G from the Deligne-Mostow lattice Λ correspond-
ing to the quintuple (2/12, 2/12, 2/12, 7/12, 11/12) onto the finite group G = U3(3)× Z/3Z.
The lattice Λ is described by Mostow in [12] as a complex reflection group, and by generators
and relation by Cartwright and Steger in [7]. This lattice has presentation

Λ = 〈j, u, v, b|u4, v8, [u, j], [v, j], j−3v2, uvuv−1uv−1, (bj)2(vu2)−1, [b, vu2], b3, (bvu3)3〉.

MAGMA command LowIndexSubgroups is used to identify the unique subgroup Γ ⊳ Λ of
index 3, which is Γ = 〈u, jb, bj〉. Using the primitive permutation representation of U3(3) of
degree 28, MAGMA is able to identify an homomorphism ϕ from Γ onto U3(3) induced from
the assignment
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u 7→(3, 8, 23, 20)(4, 24, 6, 12)(7, 9, 14, 22)(10, 19, 11, 13)(15, 16, 21, 18)(17, 26, 27, 25)

jb 7→(1, 9, 20, 12, 19, 23, 6, 16)(2, 27, 14, 17, 13, 26, 15, 25)(3, 24)(4, 5, 10, 21, 7, 11, 28, 8)

bj 7→(1, 13, 20, 15, 19, 2, 6, 14)(4, 9, 10, 12, 7, 23, 28, 16)(5, 27, 21, 17, 11, 26, 8, 25)(22, 24).

This homomorphism extends to an homomorphism ϕ from Λ onto G such that Π = ker(ϕ)
is a torsion-free normal subgroup in Λ, it is the fundamental group of S (see [14]). Let be
∆ = [Π,Π] and ∆2 = [∆,Π]. It is easy to check that that ∆2 is distinguished into Π. The
image of ∆ under the quotient map Π −→ Π/∆2 is ∆/∆2, but we observe that it is also
equal the commutator subgroup [Π/∆2,Π/∆2], and therefore, the computation of ∆/∆2 is
reduced to the one of the derived group [Π/∆2,Π/∆2].
The MAGMA command g:=Rewrite(G,g) is used to have generators and relations of both
subgroups Γ < Λ and Π < Γ. The command NilpotentQuotient(.,2) applied to Π de-
scribes Π/∆2 in terms of a polycyclic presentation. The derived subgroup [Π/∆2,Π/∆2] is
obtained with DerivedGroup(.) applied to Π/∆2. Finally, applying the MAGMA func-
tion AQInvariants to [Π/∆2,Π/∆2], MAGMA computes that the structure of ∆/∆2 is
Z/4Z× Z28. �

Corollary 4. The dimension of the kernel of ∧2H1(S,R) → H2(S,R) is 28.

3. Computation of the map ∧2H1(S,C) → H2(S,C)

Let A be the Albanese variety of the Stover surface S. The invariants are:

H1(A,Z) = H1(S,Z) = Z14, H2(A,Z) = ∧2H1(A,Z), H2,0(A) = ∧2H1,0(S)
H1,1(A) = H1,0(S)⊗H0,1(S), H0,2(A) = ∧2H0,1(S),

and

H1(A,Z) q h2,0(A) h1,1(A) b2(A)
Z14 7 21 49 91

We have a map respecting Hodge decomposition

H2,0(A)⊕H1,1(A)⊕H0,2(A)
↓ ↓ ↓

H2,0(S)⊕H1,1(S)⊕H0,2(S)
,

which is an equivariant map of Aut(S)-modules. By Corollary 4, the kernel of that map is
28 dimensional ; it is moreover a Aut(S)-module.

According to the Atlas tables [11], the group U3(3) has 14 irreducible representations
χi, 1 ≤ i ≤ 14 of respective dimension 1, 6, 7, 7, 7, 14, 21, 21, 21, 27, 28, 28, 32, 32.

The irreducible representations of Aut(S) = U3(3) × Z/3Z are the χt
i, i = 1, ..., 14, t =

0, 1, 2 where (g, s) ∈ U3(3)×Z/3Z acts on the same space as χi with action (g, s) ·v = αsg(v)
withα = e2iπ/3 a primitive third root of unity.

Theorem 5. The image of S by the Albanese map ϑ : S → A is 2-dimensional.
The map H1,1(A) → H1,1(S) is surjective, with a 14 dimensional kernel isomorphic to χ0

6 as
an Aut(S)-module. We have H1(S,Z) = χ1

3
⊕ χ2

3
and H1,1(S) = χ0

1
⊕ χ0

3
⊕ χ0

10
, as Aut(S)-

modules.
The kernel of the natural map ∧2H0(S,ΩS) → H0(S,KS) is 7-dimensional, isomorphic to
χ0

3
as a Aut(S)-module.

The surface S has maximal Picard number.
The Albanese variety A of S is isomorphic to (C/Z[α])7, for α = e2iπ/3.
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Since A is CM, it follows that S is Albanese standard, that is, the class of its image inside
its Albanese variety A sits in the subring of H∗(A,Q) generated by the divisor classes. That
contrasts with the above mentioned Schoen surfaces, see [10].

Proof. Suppose that the image of S in A is 1-dimensional. Then there exists a smooth curve
C of genus 7 with a fibration f : S → C and the map ∧2H0(S,ΩS) → H0(S,KS) is the 0
map and the kernel of ∧2H1(S,C) → H2(S,C) is at least 42 dimensional, which is impossible.
Thus the image of S by the Albanese map ϑ : S → A is 2-dimensional.

According to the Atlas character table [11], the possibilities for the U3(3)-module H1(S,Z) =
H1(A,Z) = Z14 are:

χ⊕2

3
,RZ(χ4) = RZ(χ5) = χ4 ⊕ χ5, χ

⊕2

4
, χ⊕2

5
orχ6

where RZ(χj) is the restriction to Z of the 7-dimensional complex representation χj defined

over Z[i]. It cannot be χ⊕2

4
nor χ⊕2

5
because these are not is not defined over Z (some traces

of elements are in Z[i] \Z). We cannot have H1(S,Z) = χ6 since χ6 remains irreducible, but
H1(S,Z) ⊗C = H1,0 ⊕H0,1 is a Hodge decomposition on which the representation of U3(3)
splits.

By duality, the kernel of H2,0(A) → H2,0(S) has same dimension d as the kernel of
H0,2(A) → H0,2(S). Let k be the dimension of the kernel of the U3(3)-equivariant map
H1,1(A) → H1,1(S). We have 28 = k + 2d, moreover since h1,1(S) = 35 and h1,1(A) = 49,
we get 28 ≥ k ≥ 14.

Let us suppose that H1(S,Z) = χ4 ⊕ χ5. Then the representation H1,1(A) equals to
χ4 ⊗ χ5 = χ1 + χ7 + χ10 (of dimension 1 + 21 + 27). An Abelian variety on which a finite
group G acts possesses a G-invariant polarization (for example

∑

g∈G g∗L, where L is some

polarization). Therefore the one dimensional Aut(S)-invariant space of H1,1(A) is generated
by the class of an ample divisor and the natural map ϑ∗ : H1,1(A) → H1,1(S) is injective
on that subspace. Therefore the map ϑ∗ has a kernel of dimension k = 21, 27 or 48. This is
impossible because k + 2d equals 28.

Hence, we have H1(S,Z) = χ⊕2

3
and moreover

H2,0(A) = ∧2χ3 = χ3 ⊕ χ6

(the dimensions are 21 = 7 + 14) and

H1,1(A) = χ⊗2

3
= χ1 ⊕ χ3 ⊕ χ6 ⊕ χ10

(49 = 1+7+14+27). By checking the possibilities, we obtain k = 14, H1,1(S) = χ1⊕χ3⊕χ10,
and the map H1,1(A) → H1,1(S) is surjective. The kernel of the map H2,0(A) → H2,0(S) is
isomorphic to χ3, of dimension 7, the action of U3(3) on H2,0(S) is then H2,0(S) = χ6 ⊕ χ,
where χ is a 13 dimensional representation.

Let σ ∈ Aut(S) = U3(3)×Z/3Z be the order 3 automorphism commuting with every other
element. It corresponds to an element σ′ ∈ Λ normalizing Π in Λ and such that the group
Π′ generated by Π and σ′ contains Π with index 3. Using MAGMA, one find that we can
choose σ′ = j4, where j is the order 12 element described in the proof of Theorem 3.
The quotient surface S/σ of S by σ is equal to B2/Π

′. The fundamental group of S′ is
Π′/Π′

tors where Π′
tors is the subgroup of Π′ generated by torsion elements. Using MAGMA,

one find that Π′ has a set of 8 generators with 7 of them which are torsion elements. Using
these elements, we readily compute that Π′/Π′

tors is trivial. Therefore the space of one-forms
on S that are invariant by σ is 0. Using the symmetries of U3(3), one see that σ acts on the
tangent space H0(S,ΩS)

∗ as the multiplication by α or α2. After possible permutation of σ
and σ2, we can suppose it is α.

We see that the representation of Aut(S) on H1(S,Z) is χ1

3
⊕ χ2

3
. The lattice H1(S,Z) ⊂

H0(S,ΩS)
∗ is moreover a Z[α]-module. The ring Z[α] is a principal ideal domain, therefore

H1(S,Z) = Z[α]7 (for the choice of a certain basis) and A is isomorphic to (C/Z[α])7.
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Therefore A has maximal Picard number and all the classes of H1,1(A) are algebraic. These
classes remain of course algebraic under the map H1,1(A) → H1,1(S), which is surjective.
Thus S is a surface with maximal Picard number. �

4. Lagrangian surfaces and Stover surface

Let B be an Abelian fourfold and let p : S → B be a map such that p(S) generates
B. Let us recall that S is Lagrangian with respect to p if there exists a basis w1, . . . , w4 of
p∗H0(B,ΩB) such that the rank 2 vector w = w1∧w2+w3∧w4 is in the kernel of the natural
map φ2,0 : ∧2H0(S,ΩS) → H0(S,KS). Let us now prove

Theorem 6. The 7 dimensional space Ker(φ2,0) contains no decomposable elements. The

algebraic set of rank 2 vectors in Ker(φ2,0) is a quadric Q̃ ⊂ Ker(φ2,0).
There exists an infinite number (up to isogeny) of maps p : S → B where B is an Abelian
fourfold such that S is Lagrangian with respect to p.
There exists an infinite number (up to isogeny) of maps p : S → B where B is an Abelian
fourfold such that

Q̃ ∩ p∗H0(B,∧2ΩB) = {0},

and for some of them we even have Ker(φ2,0) ∩ p∗H0(B,∧2ΩB) = {0}.

The generic rank 2 element w in Q̃ ⊂ Ker(φ2,0) does not correspond to any morphism to an
Abelian fourfold.

Proof. We proved in Theorem 5 that

H2,0(A) = ∧2χ3 = χ3 ⊕ χ6

and the kernel of φ2,0 : H2,0(A) → H2,0(S) is the 7-dimensional subspace with representation
χ3. In a basis γ = (e1, . . . , e7) of χ3 = H0(S,ΩS) = H1,0(S), the two following matrices A,B
are generators of the group U3(3):

A =





















−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 1 0 0 0 1 0
−1 0 0 0 0 0 1
0 0 0 0 1 0 0
0 1 1 0 0 0 0
−1 0 0 1 0 0 0





















, B =





















0 −1 0 0 0 −1 0
0 1 1 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 −1 0 0 1
0 0 0 0 1 0 1





















.

Using the basis β = (eij)1≤i<j≤7 of ∧2χ3 (eij = ei ∧ ej) with order eij ≤ est if i < s or
i = s and j ≤ t, one computes that the subspace Ker(φ2,0) = χ3 ⊂ ∧2χ3 is generated by the
columns of the matrix M ∈ M21,7, where tM = (N, 2I7), for

N =





















0 0 2 −2 −2 −2 0 2 2 −2 2 2 2 2
−1 0 0 2 4 0 1 −3 −3 1 −3 −4 −2 −4
0 −2 0 −2 −2 0 −2 2 2 0 0 2 2 2
−1 −2 2 0 −2 0 −1 1 3 1 1 0 0 2
−1 1 −1 3 1 3 0 −4 −2 2 0 −4 −2 −2
0 3 −3 1 −1 1 1 −3 −3 −1 1 0 −2 −2
1 1 1 3 3 1 2 −2 0 0 0 −2 0 −2





















∈ M7,14

and I7 the 7 × 7 identity matrix. Knowing that, we obtain the ideal IV of the algebraic
set V of couples (w1, w2) ∈ χ3 ⊕ χ3 such that w1 ∧ w2 ∈ Ker(φ2,0) ⊂ ∧2χ3. That ideal is
generated by 14 homogeneous quadratic polynomials in the variables x1, . . . , x14. Let W be
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the algebraic set of couples (w1, w2) ∈ χ3 ⊕ χ3 such that w1 ∧ w2 = 0 ∈ ∧2χ3. The ideal IW
of W is generated by the 2 by 2 minors of the matrix

L =

(

x1 . . . x7

x8 . . . x14

)

.

Since W ⊂ V , we have Rad(IV ) ⊂ Rad(IW ) where Rad(I) is the radical of an ideal I. On
the other hand, using Maple, one can check that the 21 minors of L are in Rad(IV ), hence
Rad(IW ) ⊂ Rad(IV ), thus V = W .
We therefore conclude that the kernel of φ2,0 contains no decomposable elements.

A 2-vector w over a characteristic 0 field can be expressed uniquely as w =
∑

i,j aijei ∧ ej
where aij = −aji. The rank of the vector w is half the rank of the (skew-symmetric)
coefficient matrix Aw := (aij)1≤i,j≤7 of w [6, Thm 1.7 & Remark p. 13]. Thus the 2-vector
w = a1v1 + · · · + a7v7 in Ker(φ2,0) (where the vi, i = 1..7 are the vectors corresponding to
the columns of the matrix M) is a rank 2 vector if and only if the 49 6 × 6 minors of the
matrix Aw are 0. The radical of the ideal generated by these minors is principal, generated
by a homogeneous quadric in a1, . . . , a7 whose associated symmetric matrix is

Q =





















7 3 3 1 −3 −3 −5
3 7 3 3 1 −3 −3
3 3 7 3 3 1 −3
1 3 3 7 3 3 1
−3 1 3 3 7 3 3
−3 −3 1 3 3 7 3
−5 −3 −3 1 3 3 7





















.

Therefore w ∈ Ker(φ2,0) has rank 2 if and only if (a1, . . . , a7)Q
t(a1, . . . , a7) = 0.

The point (10 + 8α,−7, 0, 0, 7, 0, 0) lies on the associated smooth quadric Q̃, therefore

Q̃(Q[α]) is infinite. Let be w be a 2-vector in Q̃(Q[α]). The decomposable vector ∧2w 6= 0
has coordinates in Q[α] in the basis (ei1 ∧ . · · · ∧ ei4) of ∧4H0(S,ΩS). The corresponding 4-
dimensional vector space W is therefore generated by 4 vectors w1, . . . , w4 with coordinates
over Q[α] in the basis γ = (e1, . . . , e7) of H0(S,ΩS).
One computes that the image of Q[α][U3(3)×Z/3Z] in M7(Q[α]) is 49 dimensional over Q[α],
thus

Q[U3(3)× Z/3Z] = M7(Q(α)) (= End(A) ⊗Q)

in the basis γ, (H1(S,Q[α]) is the Q[α]-vector space generated by e1, . . . , ek) and therefore
there exists a morphism p : S → E4 = B (where E = C/Z[α]) such that W = p∗H0(B,ΩB).
By hypothesis the image p(S) generates B. By construction

∧2p∗H0(B,ΩB) ∩Ker(φ2,0)

is at least one dimensional since it contains w, and therefore S is Lagrangian for p.
A contrario, the trace of an order 2 automorphism σ ∈ Aut(S) ⊂ Aut(A) acting on the

tangent space of A at 0 equals to −1, therefore the image B′ of the endomorphism p : σ−1A,
where 1A is the identity of A is an Abelian fourfold. Using Maple, one computes that

∧2p∗H0(B,ΩB) ∩Ker(f) = {0}.

Let ϑ : S → A be the Albanese map of S, and let q : A → A be an endomorphism with a
4 dimensional image and a representation in M7(Q) ⊂ M7(Q(α)) in the basis γ. Since the
matrix Q is positive definite, we have

∧2p∗H0(B,ΩB) ∩ Q̃ = {0},

where p is the map p = q ◦ ϑ : S → B. Therefore S is not Lagrangian with respect to p. �
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Remark 7. Let X be a surface and let φ2,0 : ∧2H0(X,ΩX) → H0(X,KX) be the natural
map. Let be d = dimKer(φ2,0) and q = dimH0(X,ΩX). In the proof of Theorem 6, we
saw that the set of rank k vectors in Ker(φ2,0) is a determinantal variety: the intersection
of minors of size ≥ 2k + 1 of some anti-symmetric matrix of size q × q with linear entries
in d variables. It seems to the authors quite remarkable that for Stover’s surface the set of
rank 2 vectors (obtained as the zero set of 49 6 × 6 minors of a size q = 7 matrix) is an
hypersurface in Ker(φ2,0). That hypersurface is the only U3(3)-invariant quadric of U3(3)
acting on Ker(φ2,0).
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