A generalization of the fundamental theorem of Brown for fine ferromagnetic particles - Archive ouverte HAL
Article Dans Une Revue Physica B: Condensed Matter Année : 2012

A generalization of the fundamental theorem of Brown for fine ferromagnetic particles

Résumé

In this paper, we extend the Brown's fundamental theorem on fine ferromagnetic particles to the case of a general ellipsoid. By means of Poincar{\'e} inequality for the Sobolev space $H^1 (\Omega, \text{\tmtextsf{R}}^3)$, and some properties of the induced magnetic field operator, it is rigorously proven that for an ellipsoidal particle, with diameter $d$, there exists a critical size (diameter) $d_c$ such that for $d < d_c$ the uniform magnetization states are the only global minimizers of the Gibbs-Landau free energy functional $\mathcal{G}_{\mathcal{L}}$. A lower bound for $d_c$ is then given in terms of the demagnetizing factors.
Fichier principal
Vignette du fichier
article.pdf (187.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01579191 , version 1 (30-08-2017)

Identifiants

Citer

G. Di Fratta, C. Serpico, M. d'Aquino. A generalization of the fundamental theorem of Brown for fine ferromagnetic particles. Physica B: Condensed Matter, 2012, 407 (9), pp.1368-1371. ⟨10.1016/j.physb.2011.10.010⟩. ⟨hal-01579191⟩
32 Consultations
281 Téléchargements

Altmetric

Partager

More