On the size of chaos in the mean field dynamics
Résumé
We consider the error arising from the approximation of an N-particle dynamics with its description in terms of a one-particle kinetic equation. We estimate the distance between the j-marginal of the system and the factorized state, obtained in a mean field limit as N → ∞. Our analysis relies on the evolution equation for the " correlation error " rather than on the usual BBGKY hierarchy. The rate of convergence is shown to be O(j 2 N) in any bounded interval of time (size of chaos), as expected from heuristic arguments. Our formalism applies to an abstract hierarchical mean field model with bounded collision operator and a large class of initial data, covering (a) stochastic jump processes converging to the homogeneous Boltzmann and the Povzner equation and (b) quantum systems giving rise to the Hartree equation.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...