On the size of chaos in the mean field dynamics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

On the size of chaos in the mean field dynamics

Résumé

We consider the error arising from the approximation of an N-particle dynamics with its description in terms of a one-particle kinetic equation. We estimate the distance between the j-marginal of the system and the factorized state, obtained in a mean field limit as N → ∞. Our analysis relies on the evolution equation for the " correlation error " rather than on the usual BBGKY hierarchy. The rate of convergence is shown to be O(j 2 N) in any bounded interval of time (size of chaos), as expected from heuristic arguments. Our formalism applies to an abstract hierarchical mean field model with bounded collision operator and a large class of initial data, covering (a) stochastic jump processes converging to the homogeneous Boltzmann and the Povzner equation and (b) quantum systems giving rise to the Hartree equation.
Fichier principal
Vignette du fichier
pps.pdf (313.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01577284 , version 1 (25-08-2017)
hal-01577284 , version 2 (25-08-2017)
hal-01577284 , version 3 (28-08-2017)
hal-01577284 , version 4 (05-09-2017)
hal-01577284 , version 5 (30-06-2018)

Identifiants

Citer

Thierry Paul, Mario Pulvirenti, Sergio Simonella. On the size of chaos in the mean field dynamics. 2017. ⟨hal-01577284v2⟩
416 Consultations
179 Téléchargements

Altmetric

Partager

More