Effective asymptotic analysis for finance - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Effective asymptotic analysis for finance

Résumé

It is known that an adaptation of Newton's method allows for the computation of functional inverses of formal power series. We show that it is possible to successfully use a similar algorithm in a fairly general analytical framework. This is well suited for functions that are highly tangent to identity and that can be expanded with respect to asymptotic scales of ‘‘exp-log functions''. We next apply our algorithm to various well-known functions coming from the world of quantitative finance. In particular, we deduce asymptotic expansions for the inverses of the Gaussian and the Black–Scholes functions.
Fichier principal
Vignette du fichier
asympfin5.pdf (310.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01573621 , version 1 (10-08-2017)
hal-01573621 , version 2 (30-08-2017)
hal-01573621 , version 3 (28-11-2020)

Identifiants

  • HAL Id : hal-01573621 , version 2

Citer

Cyril Grunspan, Joris van der Hoeven. Effective asymptotic analysis for finance. 2017. ⟨hal-01573621v2⟩

Collections

UNIV-PARIS-SACLAY
331 Consultations
616 Téléchargements

Partager

More