Support Vector Machines based on a semantic kernel for text categorization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2000

Support Vector Machines based on a semantic kernel for text categorization

Résumé

We propose to solve a text categorization task using a new metric between documents, based on a priori semantic knowledge about words. This metric can be incorporated into the definition of radial basis kernels of Support Vector Machines or directly used in a K-nearest neighbors algorithm. Both SVM and KNN are tested and compared on the 20-newsgroups database. Support Vector Machines provide the best accuracy on test data.
Fichier non déposé

Dates et versions

hal-01572559 , version 1 (07-08-2017)

Identifiants

Citer

Georges Siolas, Florence d'Alché-Buc. Support Vector Machines based on a semantic kernel for text categorization. IEEE-IJCNN'2000, Jul 2000, Come, Italy. pp.205-209, ⟨10.1109/IJCNN.2000.861458⟩. ⟨hal-01572559⟩
99 Consultations
0 Téléchargements

Altmetric

Partager

More