Support Vector Machines based on a semantic kernel for text categorization
Résumé
We propose to solve a text categorization task using a new metric between documents, based on a priori semantic knowledge about words. This metric can be incorporated into the definition of radial basis kernels of Support Vector Machines or directly used in a K-nearest neighbors algorithm. Both SVM and KNN are tested and compared on the 20-newsgroups database. Support Vector Machines provide the best accuracy on test data.