Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures - Archive ouverte HAL
Article Dans Une Revue Bernoulli Année : 2018

Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures

Résumé

We provide conditions on the statistical model and the prior probability law to derive contraction rates of posterior distributions corresponding to data-dependent priors in an empirical Bayes approach for selecting prior hyper-parameter values. We aim at giving conditions in the same spirit as those in the seminal article of Ghosal and van der Vaart [23]. We then apply the result to specific statistical settings: density estimation using Dirichlet process mixtures of Gaussian densities with base measure depending on data-driven chosen hyper-parameter values and intensity function estimation of counting processes obeying the Aalen model. In the former setting, we also derive recovery rates for the related inverse problem of density deconvolution. In the latter, a simulation study for inhomogeneous Poisson processes illustrates the results.
Fichier principal
Vignette du fichier
BEJ1503-017R2A0 (1)_{66359BA0-8CF1-4400-B020-EDD9F87A6889}.pdf (2.04 Mo) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-01570308 , version 1 (28-07-2017)
hal-01570308 , version 2 (19-03-2018)

Identifiants

Citer

Sophie Donnet, Vincent Rivoirard, Judith Rousseau, Catia Scricciolo. Posterior concentration rates for empirical Bayes procedures with applications to Dirichlet process mixtures. Bernoulli, 2018, 24 (1), pp.231-256. ⟨hal-01570308v1⟩
362 Consultations
348 Téléchargements

Altmetric

Partager

More