Automatic Design of Multi-Objective Local Search Algorithms - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

Automatic Design of Multi-Objective Local Search Algorithms

Résumé

Multi-objective local search (MOLS) algorithms are efficient metaheuristics, which improve a set of solutions by using their neighbourhood to iteratively find better and better solutions. MOLS algorithms are versatile algorithms with many available strategies, first to select the solutions to explore, then to explore them, and finally to update the archive using some of the visited neighbours. In this paper, we propose a new generalisation of MOLS algorithms incorporating new recent ideas and algorithms. To be able to instantiate the many MOLS algorithms of the literature, our generalisation exposes numerous numerical and categorical parameters, raising the possibility of being automatically designed by an automatic algorithm configuration (AAC) mechanism. We investigate the worth of such an automatic design of MOLS algorithms using MO-ParamILS, a multi-objective AAC configurator, on the permutation flowshop scheduling problem, and demonstrate its worth against a traditional manual design.
Fichier principal
Vignette du fichier
gecco_2017_preprint.pdf (562.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01569617 , version 1 (27-07-2017)

Identifiants

Citer

Aymeric Blot, Laetitia Jourdan, Marie-Éléonore Kessaci. Automatic Design of Multi-Objective Local Search Algorithms. GECCO 2017 - Genetic and Evolutionary Computation Conference, Jul 2017, Berlin, Germany. pp.227-234, ⟨10.1145/3071178.3071323⟩. ⟨hal-01569617⟩
212 Consultations
563 Téléchargements

Altmetric

Partager

More