Dissipated energy and boundary condition effects associated to dry friction on the dynamics of vibrating structures
Résumé
In turbomachines, dry friction devices (under platform dampers, shrouds, and tie-wire) are usually introduced to reduce resonant responses of bladed disks. Dry friction between rubbing elements induces a highly nonlinear dynamic behaviour which flattens the frequency response functions. It is clear that such behaviour requires an optimisation process to find the optimum parameters that lead to the minimum forced response amplitudes. However, different interpretations still remain concerning the explanation of the physical origin of this type of flattening. The most common one is based on dissipated energy. In this case, heat resulting from the relative frictional motion between contacting surfaces is supposed to bring sufficient dissipation to flatten response functions. On the other hand, a different approach considers that a decrease in vibrational amplitudes is explained by changes in boundary conditions induced by a stick/slip behaviour. In this study, a single degree-of-freedom system is used and analysed both in time and in frequency domains (Harmonic Balance Method) in order to show the contribution of respectively energy dissipation and change of contact state on peak levels.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...