miR-125b and miR-532-3p predict the efficiency of rituximab-mediated lymphodepletion in chronic lymphocytic leukemia patients. A French Innovative Leukemia Organization study.
Résumé
The underlying in vivo mechanisms of rituximab action remain incompletely understood in chronic lymphocytic leukemia. Recent data suggest that circulating micro-ribonucleic acids correlate with chronic lymphocytic leukemia progression and response to rituximab. Our study aimed at identifying circulating micro-ribonucleic acids that predict response to rituximab monotherapy in chronic lymphocytic leukemia patients. Using a hierarchical clustering of micro-ribonucleic acid expression profiles discriminating 10 untreated patients with low or high lymphocyte counts, we found 26 micro-ribonucleic acids significantly deregulated. Using individual real-time reverse transcription polymerase chain reaction, the expression levels of micro-ribonucleic acids representative of these two clusters were further validated in a larger cohort (n=61). MiR-125b and miR-532-3p were inversely correlated with rituximab-induced lymphodepletion (P=0.020 and P=0.001, respectively) and with the CD20 expression on CD19(+) cells (P=0.0007 and P<0.0001, respectively). In silico analyses of genes putatively targeted by both micro-ribonucleic acids revealed a central role of the interleukin-10 pathway and CD20 (MS4A1) family members. Interestingly, both micro-ribonucleic acids were negatively correlated with MS4A1 expression, while they were positively correlated with MS4A3 and MSA47 Our results identify novel circulating predictive biomarkers for rituximab-mediated lymphodepletion efficacy in chronic lymphocytic leukemia, and suggest a novel molecular mechanism responsible for the rituximab mode of action that bridges miR-125b and miR-532-3p and CD20 family members. (clinicaltrials.gov Identifier: 01370772).
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...