The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue BMC Genomics Année : 2017

The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp

Résumé

Background Pisolithus microcarpus (Cooke & Massee) G. Cunn is a gasteromycete that produces closed basidiocarps in symbiosis with eucalypts and acacias. The fungus produces a complex basidiocarp composed of peridioles at different developmental stages and an upper layer of basidiospores free of the hyphae and ready for wind dispersal upon the rupture of the basidiocarp pellis. During basidiosporogenesis, a process that takes place inside the basidiocarp peridioles, a conspicuous reserve of fatty acids is present throughout development. While several previous studies have described basidiosporogenesis inside peridioles, very little is known about gene expression changes that may occur during this part of the fungal life cycle. The objective of this work was to analyze gene transcription during peridiole and basidiospore development, while focusing specifically on cell cycle progression and lipid metabolism. Results Throughout different developmental stages of the peridioles we analyzed, 737 genes were regulated between adjacent compartments (>5 fold, FDR-corrected p-value < 0.05) corresponding to 3.49% of the genes present in the P. microcarpus genome. We identified three clusters among the regulated genes which showed differential expression between the peridiole developmental stages and the basidiospores. During peridiole development, transcripts for proteins involved in cellular processes, signaling, and information storage were detected, notably those for coding transcription factors, DNA polymerase subunits, DNA repair proteins, and genes involved in chromatin structure. For both internal embedded basidiospores (hereto referred to as “Internal spores”, IS) and external free basidiospores (hereto referred to as “Free spores”, FS), upregulated transcripts were found to involve primary metabolism, particularly fatty acid metabolism (FA). High expression of transcripts related to β-oxidation and the glyoxylate shunt indicated that fatty acids served as a major carbon source for basidiosporogenesis. Conclusion Our results show that basidiocarp formation in P. microcarpus involves a complex array of genes that are regulated throughout peridiole development. We identified waves of transcripts with coordinated regulation and identified transcription factors which may play a role in this regulation. This is the first work to describe gene expression patterns during basidiocarp formation in an ectomycorrhizal gasteromycete fungus and sheds light on genes that may play important roles in the developmental process.
Fichier principal
Vignette du fichier
2017_s12864-017-3545-5_{4AE62217-F174-4D24-9053-58311E17C8E7}.pdf (5.89 Mo) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01568134 , version 1 (24-07-2017)

Licence

Paternité - Partage selon les Conditions Initiales

Identifiants

Citer

Maira de Freitas Pereira, André Narvaes da Rocha Campos, Thalita Cardoso Anastacio, Emmanuelle Morin, Sérgio Hermínio Brommonschenkel, et al.. The transcriptional landscape of basidiosporogenesis in mature Pisolithus microcarpus basidiocarp. BMC Genomics, 2017, 18 (1), ⟨10.1186/s12864-017-3545-5⟩. ⟨hal-01568134⟩
120 Consultations
71 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More