Variance-based sensitivity indices of computer models with dependent inputs: The Fourier Amplitude Sensitivity Test - Archive ouverte HAL
Article Dans Une Revue International Journal for Uncertainty Quantification Année : 2017

Variance-based sensitivity indices of computer models with dependent inputs: The Fourier Amplitude Sensitivity Test

Résumé

Several methods are proposed in the literature to perform the global sensitivity analysis of computer models with independent inputs. Only a few allow for treating the case of dependent inputs. In the present work, we investigate how to compute variance-based sensitivity indices with the Fourier amplitude sensitivity test. This can be achieved with the help of the inverse Rosenblatt transformation or the inverse Nataf transformation. We illustrate so on two distinct benchmarks. As compared to the recent Monte Carlo based approaches recently proposed by the same authors in Mara et al. (2015), the new approaches allow to divide by two the computational effort to assess the entire set of first-order and total-order variance-based sensitivity indices.
Fichier principal
Vignette du fichier
Tarantola_Mara_IJUQ2017.pdf (227.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01568006 , version 1 (24-07-2017)

Identifiants

Citer

Stefano Tarantola, Thierry A. Mara. Variance-based sensitivity indices of computer models with dependent inputs: The Fourier Amplitude Sensitivity Test. International Journal for Uncertainty Quantification, 2017, 7 (6), pp.511-523. ⟨10.1615/Int.J.UncertaintyQuantification.2017020291⟩. ⟨hal-01568006⟩
300 Consultations
1203 Téléchargements

Altmetric

Partager

More