N

N

Variance-based sensitivity indices of computer models
with dependent inputs: The Fourier Amplitude
Sensitivity Test
Stefano Tarantola, Thierry A. Mara

» To cite this version:

Stefano Tarantola, Thierry A. Mara. Variance-based sensitivity indices of computer models with
dependent inputs: The Fourier Amplitude Sensitivity Test. International Journal for Uncertainty
Quantification, 2017, 7 (6), pp.511-523. 10.1615/Int.J.UncertaintyQuantification.2017020291 . hal-
01568006

HAL Id: hal-01568006
https://hal.science/hal-01568006
Submitted on 24 Jul 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01568006
https://hal.archives-ouvertes.fr

VARIANCE-BASED SENSITIVITY INDICES OF
COMPUTER MODELS WITH DEPENDENT INPUTS:
THE FOURIER AMPLITUDE SENSITIVITY TEST

S. Tarantola® & T.A. Mara®>**

IDirectorate for Energy, Transport and Climate, Joint Research Centre, European Commission,

Ispra (VA), Italy, 21027

2PIMENT, EA 4518, Université de La Réunion, EST, 15 Avenue René Cassin, 97715
Saint-Denis, Réunion

3Directorate for Modelling, Indicators and Impact Evaluation, Joint Research Centre, European

1 Commission, Ispra (VA), Italy, 21027

*Address all correspondence to: T.A. Mara, PIMENT, EA 4518, Université de La Réunion, FST, 15 Avenue

René Cassin, 97715 Saint-Denis, Réunion, E-mail: thierry. mara@univ-reunion.fr

Several methods are proposed in the literature to perform the global sensitivity analysis of computer models with
independent inputs. Only a few allow for treating the case of dependent inputs. In the present work, we investigate
how to compute variance-based sensitivity indices with the Fourier amplitude sensitivity test. This can be achieved
with the help of the inverse Rosenblatt transformation or the inverse Nataf transformation. We illustrate so on two
distinct benchmarks. As compared to the recent Monte Carlo based approaches recently proposed by the same authors
in [1], the new approaches allow to divide by two the computational effort to assess the entire set of first-order and

total-order variance-based sensitivity indices.

KEY WORDS: Fourier amplitude sensitivity test; inverse Rosenblatt transformation; inverse Nataf

transformation; variance-based sensitivity indices; dependent contributions; independent contributions

2 1. INTRODUCTION

3 Good practice in computer model simulations requires tatincertainties in the process under study be acknowl-

4 edged. Thisis achieved by treating the model scalar injkgsdndom variables and functional inputs (temporally or
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2 S. Tarantola, & T.A. Mara

spatially dependent) like stochastic fields [2,3]. Subsetjy, the model responses are also random and their uncer-
tainties can be assessed, among others, via Monte Carltasioms. Global Sensitivity Analysis (GSA) of computer
model responses usually accompanies the uncertaintysagses It aims to point out the set of input factors that
mainly contributes to the model responses uncertainty.h @ucinformation is essential to indicate the modellers
what is the subset of inputs upon which they should concentheir effort in future works in order to obtain more

accurate and relevant predictions.

Several methods exist to perform GSA of model outputs wherirtputs are independent [4]. The choice of the
method to employ depends on the importance measure to Ipeagsti. Two types of quantitative sensitivity mea-
sures are of particular interest: the variance-basedtsétysmeasures [5] and the moment-independent sensitivit
measures [6,7]. Numerical methods to assess these sipsiteasures can be classified as: non-parametric Monte
Carlo approaches (among others, [8,9]), parametric sdentthods (likewise the Fourier amplitude sensitivityt tes
[10,11]) or emulator-based approaches (e.g. [12,13]). Agsbthe variance-based sensitivity measures, practiton
mostly focus on the first-order sensitivity index (also edlcorrelation ratio [14,15]), that measures the marginal
effect of one single input, and the total sensitivity indbattaccounts for the both marginal effects and interaction
effects of the input of interest with the other ones [16]. Titerested readers are referred to [17] for more details

about the usefulness of these sensitivity measures in s@AesBttings.

Performing sensitivity analysis of computer models witpeledent inputs is more challenging. Just like models
can be of different natures (linear, non-linear, additivd aon-additive), the dependence structure amongst thisinp
can be of different natures too (linear, non-linear, paerand non-pairwise). In case of linear dependence stajctur
the inputs are said correlated. But in many cases, the depeadstructure can be more complex. The latter is

embedded in the joint probability distribution of the inpaind in their copula.

The authors in [18] propose to distinguish the influence dhant due to its correlation with the other variables,
and the influence that is not due to its possible correlatidihg idea is that if an input is not influential on its own
(without accounting for its correlations with the othering) then it can be concluded that it is a spurious input, only
influential because of its correlations. This concept wees lan extended to the variance-based sensitivity measures
in [1,19] and to the density-based sensitivity measure @}.[2

Kucherenko et al. [21] generalize the first-order and totdd indices for the case of computer models with
dependent inputs. A non-parametric Monte Carlo approagirdposed to evaluate them based on the theory of
Gaussian copula. Simultaneously, in [19] four new varialpased sensitivity measures are defined: two that account

for the dependencies of an individual input with the othez(the authors called them the first-order and total full
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FAST for models with dependent input variables 3

sensitivity indices respectively) and two that do not aetdaor the dependencies (called uncorrelated/independent
first-order and total sensitivity indices respectively)ofdover, the authors show that the first-order sensitivithek
generalized in [21] is the same as thkill first-order sensitivity indexXthat accounts for correlations) while the
generalized total sensitivity index of [21] is the same &¥rindependent total sensitivity indékat does not account

for correlations). Furthermore, two new variance-basdates namely théull total sensitivity indexandindependent
first-order sensitivity indeare also introduced in [19]. These four different sengitimeasures are discussed in the

next Section.

In [1], the new variance-based sensitivity measures aradby defined (see Eqgs.(1-4)) and two non-parametric
methods are proposed to estimate them. The first method asgdisg strategies in conjunction with the inverse
Rosenblatt transformation [22] while the second methodleysgthe inverse Nataf transformation [23]. The latter
corresponds to the procedure of Iman and Conover when thettdependence structure is the correlation matrix
instead of the rank correlation matrix as in their originappr [24] and the Gaussian-copula-based approach em-
ployed in [21] for generating correlated samples. In [1Bg polynomial chaos expansion method is employed to
evaluate the four variance-based sensitivity measures laiter is very efficient because it only requires one single
input/output random sample. But it also requires a procetumake the input sample at hand independent. For
this purpose, the authors derive a specific procedure offity fieet some specific correlation structures (like pairwise

linear and non-linear correlations).

Another idea is proposed in [25] that consists of distinging thecorrelative effect of a given input onto the
computer model response from @isuctural effect. This can be achieved, for instance, by first ideirtgythe model
structure via an ANalysis Of VAriance decomposition in treb8l' sense (for ANOVA see [8]). For this purpose
independence of the inputs is mandatory. Then, the stralcmd correlative effects can be inferred by analyzing
the covariance structure of the ANOVA decomposition stengrifom the correlation structure amongst the inputs.
Caniou names this approach the ANCOVA (acronym for ANalpdi€OVAriance) decomposition and the author
uses the polynomial chaos expansion for prior ANOVA decositfum [26]. There are other approaches proposed in

the literature that are not discussed here (the interesseter can refer to [27,28], among others).

So far, no numerical approach has been proposed in thetiterto compute the four variance-based sensitivity
indices introduced in [19] with the Fourier Amplitude Sdivitly Test (FAST). One can cite [29] in which the author
derives a cheap FAST-based approach to evaluate the indleidirst-order sensitivity index and the full first-order
sensitivity index. One can also mention the early work of Xd &ertner [30] that allows to assess the full first-order

sensitivity index. Therefore, the proposed approachesiaable to account for interactions in computer models

Volume x, Issue x, 2017
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4 S. Tarantola, & T.A. Mara

with dependent inputs. The present work aims to fill this gépthis end, we show that the extended FAST [11]
in conjunction with the inverse Rosenblatt transformafi@®] or the inverse Nataf transformation [23] allows to
compute the four sensitivity indices.

The paper is organized as follows: we start by recalling #fenitions of the variance-based sensitivity indices in
the case of dependentinputs in Section 2. The link with tiveoletotal variance is made in Section 3. In Section 4, we
discuss the two transformations, namely, the inverse Riagnransformation and the inverse Nataf transformation
Section 5 recalls the classical FAST method for models wittependent inputs and then its extension to the case of

dependent inputs is described. In Section 6, the new apipesare tested before concluding.

2. DEFINITION OF THE SENSITIVITY INDICES

Let f(x) be a square integrable function overradimensional space whese= {z,, - - - , z, } a continuous random
vector defined by a joint probability density functiptw:). The scalarf(x) can be regarded, without loss of gener-
ality, as the scalar response of a computer model to the ggiutin the sequel, we set = (1, ;) with 2; and

x, two non-empty subsets af. The importance of; for f(x) can be measured with the variance-based sensitivity
indices (also called Sobol’ indices,[5]). The Sobol’ ineiccan either measure the amount of variancé(aef) due

to 1 alone, or measure the amount of variance that also inclusl@séractions withe,. Besides, wher; andx,

are dependent, it is possible to distinguish the two possjiges of contribution of; to the variance of (x): i) the
independent contribution that does not account for the midgece ofr; with =, and, ii) the full contribution that
accounts for the dependence betwaegrandx,. To the authors’ best knowledge, this concept was first chiced

in [18] although the partial correlation coefficient of [3%]related to this concept. The variance-based sensitivity

measures were defined in [19] for correlated variables arehtéy generalized in [1]. They are defined as follows:

VIE [f(2)|a1]]

Sy, = Vel 1)
ST = %&lfzﬂ’ @
Sat = %w’ ®
ST, — w, (4)

whereV [-] is the variance operatdE, [-] is the mathematical expectation whi¥g-|-] andE [-|-] are the conditional

variance and expectation respectively.

International Journal for Uncertainty Quantification
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FAST for models with dependent input variables 5

The variables with an overbar are conditional variablesigfore:z; ~ pg, o, (1|z2) andz, ~ py, |z, (T2|21).
While the first two sensitivity indices Eqgs.(1-2) are thesslaal definitions of the Sobol’ indices [21], the last two
are only defined for dependent input variables. All theséceslare scaled withifD, 1] and we haveS,, < ST,,,
Sind < ST ind,

The full first-order sensitivity inde%,,, measures the amount of variancefg¢k) due tox; and its dependence
with x; but does not include the interactionsmfwith . The full total sensitivity index'T,,, does account for these
two types of contributions (dependence and interactiohg ifdependent first-order sensitivity ind@i{;d measures
the contribution ofc; by ignoring its correlations and interactions with while Sngd accounts for interactions and
ignores correlations. An input; can contribute to the model response variance only becditsestrong correlations

with the other inputs. In this case, we shall fisid,,, > 0 andST;'?d =0.

The authors in [1] propose two non-parametric methods thuatathese sensitivity indices. The first approach
consists of generating random samples of the dependeablesifrom the inverse Rosenblatt transformation while
the second one uses the sampling technique of Iman and Qof2dje The first approach is advisable when the
conditional densitie®,, |, andpg, |, are known while the procedure of Iman and Conover (IC) is tptaderred
when the marginal densities and the rank correlation stradf the input variables are known. We note that, when the
target dependence structure is the correlation matridGh@rocedure is equivalent to the Gaussian copula approach

used in [21] and the inverse Nataf transformation describditle present work.

3. LINK WITH THE LAW OF TOTAL VARIANCE

It is usual to define the Sobol’ indices from the law of totali@ace, namely
V{f(@)] = VIE[f(@)lz]] + E[V[f(2)lz]] . (5)
Dividing this equation by the left-hand side term yields,
1= Sy, + ST (6)
In principal, Eq. (5) should be written as follows,

Vo [f(@)] = Va, [Ea, [f(2)[@1]] + Eq, [Va, [f (@) |24]] (7)

Volume x, Issue x, 2017



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

6 S. Tarantola, & T.A. Mara

with the variables over which the conditional operatorsagmglied indicated in subscript. But in the case of indepen-
dent variables, it is not necessary to indicate so and Eqwi#)out subscript) is adopted for the sake of simplicity.
However, such a precision is necessary when the variab#edegrendent because of the axiom of conditional proba-
bilities: pg () = Pz, (T1)Pay|a: (T2|T1) = Pa, (T2) P2y |2, (T1]T2). In effect, settingey = x1|x2 andz; = x2|z1, ONE

can also write the law of total variance as follows,

Vo [f(®)] = Va, [Ea, [f(2)|21]] + Ea, [Va, [f ()] 24]] (8)

Normalizing the latter equation, yields,

1= 84+ ST,,. (9)

The two different versions of the law of total variance ho&thuse according to the axiom of conditional probabil-
ities, x; and &, (resp. &; andx,) are independent random vectors (ifx) = pg, (x1)pz,(Z2)). Therefore, for
the sake of clarity, the definitions of the Sobol’ indiceshe tase of dependent input variables should be written as

follows,

IV ¢
syt - Enlialie) a
o - YalEn U@ W
s, - Enlinleie) .

4. TWO PROBABILISTIC TRANSFORMATIONS

4.1 The inverse Rosenblatt transformation

Itis shown in [1] that the Rosenblatt transformation [22fhie key for estimating the four sensitivity indices defined
in Eqs.(1-4). Indeed, the Inverse Rosenblatt TransfoondtRT) provides a set of dependent varialites, ;) from

a set of independent random vectuas, u,) uniformly distributed over the unit hypercubg' = [0, 1]. Assuming

International Journal for Uncertainty Quantification
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FAST for models with dependent input variables 7

that(x1, x,) is a vector of continuous random variables, the inverse ftala# transformation writes,

z2 = FM(u2) (14)

- -1
Ty = le‘zz(uﬂuz)

where, F ! is the inverse cumulative density function ®f (that is, p,, = dF,,/dxz;) and F;lllmz is the one
of &1 (that is, pg, |z, = O0Fg,|2,/0x1). IRT simply exploits the axiom of conditional probabiis: p(x1, x2) =
Py |, (T1|22) e, (2) butis not unique. Indeed, as already aforementioned, analsa writep(x1, 2) = Pg, |z, (T2|T1)
P« (1), Which yields the following transformation,

T, = ngll(ul) (15)

Zp = F;Z‘lm(uﬂul)

To generate the se{g1, x,) and(x1, Z,) from these two transformations, an independentsetu,) uniformly
distributed over the unit hypercube is required. This iedfitly performed with, for instance the LBequences of

[32]. Using(z;, z2) and(xq, 2), One can estimate the sensitivity measures defined in E4sd4& shown in [1].

4.2 The inverse Nataf transformation

The application of IRT requires the knowledge of the conditl probability densities. In many situations, only the
individual cumulative densities (i.€:;, (), Vj € [1,n]) and the correlation matriR., are known. In this case, the
inverse Nataf transformation (INT) is more suitable thai IR generate samples with correlation approaching the
desired matrixR,. It is worth mentioning that the procedure of Iman and Con¢24] and the Gaussian copula-
based approach employed in [21] are tantamount to INT. Titer lases a set of correlated standard normal variables

(&)

= (2§,...,z%) with correlation matriXR ., and generates the desired correlated random variable@agsso

rn

z
zj=F 1 ®(25)),Yj=1,...,n (16)

where® is the cumulative density function of the standard normekde. We note that transformation (16) implies
thatz; andz§ have identical ranking. Therefore, INT is equivalent to pnecedure of [24]. However, INT and the
original IC procedure differ in the fact that the former gextes samples af w.r.t. the correlation matriR,, whereas

the latter generates samples w.r.t. the rank correlatidrixoxad . Consequently, INT is a bit more complicated than

Volume x, Issue x, 2017
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142 the original IC procedure. We note that Eq. (16) is also eggaddn the theory of Gaussian copula (see [21]).

143 Samplingx with INT requires to generate® with the desired correlation matriR.. This is achieved with the
144 Cholesky transformation. Let us denote bythe lower triangular matrix such th&, = LL”, the superscripl’
145 stands for the transpose operator. This decompositiorsisilgle becausR . is positive-semidefinite. Then, from an

146 independent standard normal vectgthe correlated standard normal vectéris obtained as follows,
2¢ = zLT. a7

147 The issue with this approach is to filt), such thatc has the desired correlation matiy,. This can be achieved
148 with an optimization scheme in whidR,, is iteratively adjusted until the correlation matrixosatisfactorily matches

149 Ry [33]. The relationship betwedR, andR,, is discussed for some densities in [34].

150 5. THE FOURIER AMPLITUDE SENSITIVITY TEST
151 5.1 The classical FAST for independent variables

152 FAST was introduced in [10] to compute the individual firstker sensitivity index for models with independent
153 inputs (Eq. (1) withe; = z;). In FAST input values are sampled over a periodic curvedkptores the input space.
154 Each input is associated with a distinct integer frequefi¢ye periodic sampled values are propagated through the
155 model. Then, the Fourier transform of the model output is pated. The Parseval-Plancherel theorem allows to
156 compute the variance-based sensitivity indices via theai€ougoefficients evaluated at specific frequencies. The
157 individual first-order sensitivity index of a given inputassthe Fourier coefficients of the associated frequency and
158 its higher harmonics (see Algorithm 1).

159 The setw = {ws,...,w,} of integer frequencies must be chosen in order to avoidferemces between
160 higher harmonics. This is possible up to a given interfeeemrder)/. Cukier et al. [35] provides an algorithm to
161 generate such a set of frequencies for prescrikedndn. In practice,N draws of the input values are generated
162 by discretizings as follows: sy, = Z"T’f k=1,...,N. With classical FAST, all first-order sensitivity indicearche

163 obtained with only one set of model runhs The Nyquist criterion imposes that > 2M x max(w) + 1. Therefore,

164 the dimension of the model and the choice of the interference facfidr, considerably impact the number of model
165 runs N and also complicate the choice of an interference-free fsiequencies. To circumvent this problem, the
166 random balance design trick of [36] was extended to FAST 1.[3lgorithm 1 describes the steps to perform the

167 classical FAST approach.

International Journal for Uncertainty Quantification
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FAST for models with dependent input variables 9

Algorithm 1: The classical FAST procedure

1. Setu;(s) = 3 + L arcsin(sin(w;s + ¢;)) Vj € [1,n], with s varying uniformly over(0, 2r], ¢; € (0, 27] is
a randomly chosen shift parameter angis an integer frequency

2. Perform the transformation; = F~*(u;),Vj = 1,...,nto getz; ~ p,,(z;)
3. Evaluatef (x(s)) and compute the Fourier coefficients,

1 2 )
Cw == (z(s))e™*V*ds, Yw € N* (18)
T Jo

4. Compute the first-order sensitivity indices,

+o0 2
SEAST:M Vi=1,...,n. (19)

+ )
wO:ol |Cw|2

To compute the total sensitivity index of, that isST,,,, Saltelli et al. [11] propose to assign a high frequency to
z; (typically w; = 2M x max(w.;), wherew..; = w/w;) and small values to the other frequenadies;. These
latter do not need to be free of interferences although retended. Consequently, in the Fourier spectrum of the
model response the amount of variance attributed; tbncluding its marginal effects and its interactions wiktet
other inputs) is localized in the high frequency rangex M x max(w.;)). The total sensitivity index is estimated

as follows: N2
~ 12
~ . Zw:%_'_l |Cw|
T ™ N/2 |4
Zw/:l Cw|2

with ¢ = 2 S0, f(®(sk))e "% an estimator of Eq. (18).

(20)

The drawback of the proposed approach (called EFAST) ishieatomputational effort to estimat®,,,, ST%,)
is high since the Nyquist criterion imposes théat> 2M w,. But, S, can be estimated simultaneously wif’,
(i.e. with no extra cost). Hence, x N model runs are necessary to compute all individual firsepehd total
sensitivity indices. The author in [38] proposes a sliglitedent version of EFAST that do not alleviate much the

computational burden, but allows for the calculation oftittal sensitivity indices for groups of inputs.

5.2 EFAST and the inverse Rosenblatt transformation

Using EFAST and IRT it is possible to derive an algorithm tonpaite the variance-based sensitivity indices in the
case of dependent input variables (from now on, this proeetunamed EFAST-IRT). Indeed, in the both EFAST

and IRT algorithms the vectat is generated from uniformly and independently distributadables. Consequently,

Volume x, Issue x, 2017
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10 S. Tarantola, & T.A. Mara

Algorithm 2 : EFAST with the inverse Rosenblatt transformation (EFABT)

1. SetM (usually 4 or 6 but sometimes even 10 if we know a priori thatrtiodel has strong non linearities).
Select a set of — 1 integer frequencie®..; and inferw,; = 2M max(w.;)

2. Generate,; = % + % arcsin(sin(w;s + ¢,)),Vi=1,...,n
3. Generate the vectarfrom IRT (Eq. (15)) withx; = x; and@, = x;
4. Run the model and save the model responses of intgfest
5. Compute the Fourier coefficients and deduce the varibased sensitivity indices as follows,
M A 2
N _1lC i
Zw:l Cw|
N/2 ~
. Pl g 1wl
Zw:l |CCU|

one can take advantage of the (deterministic) periodicaptiag of EFAST to generate the dependent variables in
conjunction with IRT. The new algorithm to computg,(, S7,,) is given by algorithm 2.

It can be noticed that one sample of si¥e> 2M w; is necessary to compute both indices for a givemand
n x N model runs are necessary to compute all first order and tetsits/ity indices. To evaluate the independent
sensitivity indicesﬁg’;d, STa’ﬁ’fd) one must proceed as just shown by operating the inversenRlasetransformation

from Eq. (14) withz; = x; andx, = ;. The sensitivity indices are estimated as previously, tame

M o 2
Gin =11Cw;
Sind - — % (21a)
w=1ICw
N/2 ~
~ind Zw/:izi+1|cw|2
w=1ICw

Using samples of siz&/, an overall of 2V x n model runs are necessary to compute the four sensitivifgesd
(S, STy, S;:%d, ST;:Ld), Vi =1,...,n. Ascompared to the non-parametric methods described,iwfii¢th require

4N x n samples to compute the same set of sensitivity indices,dimpatational effort is halved.

5.3 EFAST and the inverse Nataf transformation

The algorithm to perform GSA via the inverse Nataf transfation (from now on named EFAST-INT) is more subtle

than with IRT. Indeed, the calculation ¢§,,, ST,,) or (Si"¢, STi"?) depends on the position ef in the vectorz

International Journal for Uncertainty Quantification



196

197

198

199

200

201

202

203

204

205

206

207

208

FAST for models with dependent input variables 11

Algorithm 3 : EFAST with the inverse Nataf transformation (EFAST-INT)

1. Choose a value fa¥/ and set = 1. Select a set of — 1 integer frequencies..; and set
w; = 2M maX((,U,\,z')

2. Generate; = 3 + % arcsin(sin(w;s + ¢,)),Vj = 1,...,n with s regularly sampled ovep, 2] using N
points

3. Deduce the independent standard normal variabjes,®*(u;),Vj = 1,...,n. Consider the following
vector orderingz = (z;, z;) to estimateS,., andST,, (resp.z = (z~;, 2;) t0 estimate%.’;d andST;?d)

4, SetR, = R,
5. FindL, getz¢ from Eq. (17) and generatefrom Eq. (16)

6. Calculate the sample correlation matity, from the samplex. If R, is not satisfactory, in the sense that it is
not close enough to the desired correlation strucRiye modify R, and resume from 5, otherwise, continue

7. Run the model or and save the model responses of intefést). Finally, compute the variance-based
sensitivity indiceg(S,,, ST',,) (resp.(5i, ST:Zd)) as in Eq. (22) (resp. Eq. (21))

8. if i = n then stop. Otherwise, set=i + 1, R, = PR,P” and resume from 3.

of standard normal variables used in the Cholesky transftbom (Eq. (17)). As explained in [1], if we consider the
set(z;, z~;) and apply the Cholesky transformatidt$,,,, ST..,) can be computed. If the Cholesky transformation
is applied to the setz..;, z;), then(Si"¢, STi"?) can be obtained. In both cases, EFAST-INT assigns the Highes
frequencyw; to z;.

The procedure must also include an algorithm to find the agitiRy, that produces a sample with the desired
correlation matrixR .. GivenR,, the correlation matrix and the marginal densities of eaphtivariables, EFAST-

INT proceeds as in Algorithm 3 in which the following permtida matrix is employed,
P= n—1 (23)

with el ; = (0,...,1) andI,_; the(n — 1) x (n — 1) identity matrix.

The entire set of sensitivity indicesS,,,, ST, S;?d,STifd),Vi = 1...,n are obtained with 2 samples
of size N by considering circular permutations of the set= (z1,...,2,). More specifically, considering the
set(z1, 2z, . . ., z,), With one sampldS,,, ST,,) can be evaluated by assigning the highest frequenay tand
with another sampléS;’.’jld, SATi:fl) are obtained by assigning the highest frequency,{o By considering the set

. . . ~ ~ - ~ ind .
(22,...,2n,z1) and the correlation matrix associated 19, . . ., 2, 1), (Sz,, ST s, S;’fd, ST, ) can be estimated

Volume x, Issue x, 2017
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209 with other two samples, and so on. At thth iteration, step 8) transforms the correlation maRiy so that the latter

210 corresponds to the correlation matrix of the circularlyrpeted vectofz;, z;11, ..., Tn, 1, ..., T;—1).

211 6. NUMERICAL TEST CASES
212 6.1 Example with EFAST-IRT

213 To illustrate the EFAST-IRT approach, let us consider thiefang non-linear functionyf (x) = z12, + x324 Where
214 (z1,72) € [0, 1]2is uniformly distributed within the triangle; +z, < 1 and(zs, z4) € [0, 1]2is uniformly distributed
215 within the trianglezs + x4 > 1. This function was studied in [1] with an non-parametriprgach based on Quasi-
216 Monte Carlo sampling. The inverse Rosenblatt transfoettiat yields(z1, z2) in the domainz; + 2, < 1 from

217 the independent variablésy, u,) € [0, 1]2 is (see details in [1]),

r1 = 1—-+v/1—-u
! ' (24)
Ty = u2\/l—u1

218 Because of the symmetry, the IRT (@f,, z1) is obtained by simply inverting; andx; in Eq. (24). In the same way,

219 the IRT of (x3, 24) writes,

xz = (75
: Vis . (25)
T4 = (U4 — 1)\/U,_3 +1
220 The symmetry of the problem implies that the sensitivityited ofz, andz, are equal, as well as those of

221 andx4. We have computed 100 replicate estimates of these inditbgdive EFAST-IRT approach. This has been
222 achieved by randomly drawing the four shift paramefess i = 1, ..., 4} at each replication. We imposed a sample
223 size N = 4 095, which corresponded to a total number of function gadisreplicate equal to 4 4,095 = 16 380,
224 and we selected/ = 8. Consequentlyw; = (N — 1)/M = 255. Finally, we chose the following set of low

225 frequenciesv.; = (5,9, 14), although other choices were equally suitable.

226 Fig. 1 depicts a few draws obtained with EFAST-IRT. We notd the input values are sampled accordingly with
227 the desired constraints. The sample fills the input spade gull. Tab. 1 shows good agreement between the mean
228 estimates of the sensitivity indices and the analyticalesl The results indicate th@ats, z4) are the most relevant

229 inputs for the response variance.

230 By referring to the work of [1], it can be inferred that one pibde ANOVA decomposition (in the Sobol’ sense

International Journal for Uncertainty Quantification
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231 [5]) of f(x)is:

f(@) = fo+ fu(z1) + f2(T2) + fra(z1,%2) + f3(w3) + fa(Ta) + faa(z3, Ta) (26)

232 where the functions in Eq. (26) have the same propertiesttiese of the Sobol's ANOVA decomposition [5]. In
233 particular, they are orthogonal. This property of orthogjdp allows to cast the variance ¢f(x), denotedV, as
234 follows:

V =Vi+ V3" 4 Vig+ Va+ Vi 4 Vg (27)

235 With Vi = E[f?(x;)], Vi = E[f?(z;)] andVi; = E[f7(x:,Z;)]. By denotingV'T; = V; + V;; yields the following
236 variance decomposition,

Vy=VTi+ V" + V5 + V™ (28)

The normalization of the latter equation byyields the following relationship between the variancedshsensitivity
indices,

STy, + S + ST, + S = 1.

237 The analytical variance-based sensitivity indices reggbih Tab. 1 satisfy this relationship. Moreover, we canrinfe
238 thatST,, + Si"® = 0.10, which indicates that the pdit;, z2) explains 10 of the response variance since the pairs

239 (w1, x2) and(zs, xz4) are independent.

TABLE 1: One hundred replicate estimates of the sensitivity indicesputed with EFAST-IRT.
Sy, ST, st srind 5. ST, St STind
Analytical 0033 Q044 (0056 Q067 0233 Q400 Q500 0666
25" perc. 0028 Q043 0051 Q066 0209 Q361 Q475 0639
mean 0032 0048 Q055 Q071 0226 Q395 0497 0669
97.5" perc. 0037 Q056 Q061 Q077 Q248 Q448 0523 Q705

EFAST-IRT]

240 6.2 The Ishigami function with EFAST-INT

241 The Ishigami function is one of the benchmarks model forsmag the efficiency of GSA methods [39]. It has been
242 intensively used by statisticians to test their sensjtigibalysis approaches in the case of independent inputs (e.g
243 [40,41], among others). Recently, the authors in [21] idtrced a new method for computisy, andST;’.?d in the

244 case of models with correlated inputs and tested it on thigdshi function. We repeat here the same example with
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FIG. 1: Some draws obtained with FAST after the inverse Rosenbtatstormation. We have; + xz, < 1 (blue circles) and
x3 + x4 > 1 (red stars).

EFAST-INT but computésS,,, ST:"?, Sind ST, ), Vi = 1,2,3. The Ishigami function writes,

f(z) = sinzy + 7sin® 2 4+ 0.1z3sin x1 (29)

with input variables being uniformly distributee:n < x; < 7,7 = 1,2, 3. Note that this function is non-linear in all
inputs andr, does not interact with the other two variables. Althoughk thinction has a low dimension (three inputs
only), it is a challenging function for EFAST because the tasm, which represents the interaction betwee@and

x3, IS strongly non-linear and its Fourier coefficients havesiderable amplitudes at high frequencies. This strong
non-linearity led us to choose a considerably high valug/ofThe difficulty of the test was emphasized because a

correlationry3 €] — 1, 1] was imposed betweery andzs.

Likewise the previous exercise, 100 replication estimafable sensitivity indices were performed. The design
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of the EFAST-INT was the followingM = 15, N = 8 191,w.; = (5,8) andw; = 273. We chose highe¥ here
than in the previous example because of the strong nonriifesamentioned above. Following the work of [21], the

exercise was conducted by varying the correlation coeffieig; within | — 1, 1].

The results are depicted in Fig. 2. To our best knowledge nadytical sensitivity indices are available for this
test function. We can infer that, becauseés not correlated to the other two inputs, its full and indegent sensitivity
indices are equal. Besides, becaugeloes not interact with the other two inputs, its total and-farsler indices are
also equal. Moreover, we note that the full index is always greater or equal to the independent mﬁj& (resp.
ST,, > STi"). However, we may also findi"¢ > S, (or ST:"* > ST;,,) as also shown in the previous exercise

(see Tab. 1).

As far asx; andzs are concerned we note that, when the correlation coeffigergro, as expected the full and
independent sensitivity indices are equal. Wheyis close to+1, the independent sensitivity indices (both first and
total order) ofr; andxs are null. This makes sense becausef= 41, then all the information irf (x) is captured
by only one of the pairé$zy, x2) or (z,, x3). Indeed, in this case;; andxz contain the same information and it is
not possible to distinguish their individual contributgoim the model response. This finding is peculiarly important
for the modeller as it indicates that the output uncertaimgxplained by one of these two pairs only, thus, allowing
some kind of dimensionality reduction. Indeed, the modeitav knows that to obtain narrower output uncertainty,

he/she should pay some further effort to reduce the unogyteither in the paifzy, z2) or in (z2, x3).

i

o o o o

o AN © ©

T T T T
17}

o
o

Sensitivity index
Sensitivity index
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FIG. 2: The variance-based sensitivity indices estimated with&FMNT versus the correlation coefficient betwegrandzs.
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7. CONCLUSION

Performing global sensitivity analysis of model outputhwitependent inputs is a challenging issue. Variance-based
sensitivity indices have been defined in [1,19,21] and difiéapproaches have been proposed to estimate them. Four
types of sensitivity indices can be of interest: (i) the firlit-order (resp. full total) sensitivity index that meeess

the amount of model response variance explained by an iaptdrfwhich takes into account its dependence with the
other inputs; (ii) the full total-order sensitivity indelxdt measures the amount of model response variance explaine
by an input factor which takes into account the both its ddpane and interactions with the other inputs; (iii)
the independent first-order sensitivity index of an inpuit tneasures its relative contribution alone to the response
variance by ignoring its dependence with the other inputd;fmally (iv) the independent total-order sensitivity &xd

of an input that measures its relative contribution to trspomse variance by ignoring its dependence with the other

input variables but by accounting for its interactions vifik latter.

The Fourier amplitude sensitivity test is one of the first moels for variance-based global sensitivity analysis
[10]. Since that, the method has been extended by severarayil1,29,30,37,38]. Specifically, in [30] FAST has
been adapted to account for correlations among inputs Imgube sampling technique of Iman and Conover [24].
In this work, we extend FAST to compute the four sensitivitglices defined above. The main idea of our approach
is to impose either a dependence structure amongst thesiailt the inverse Rosenblatt transformation [22], with
Algorithm 2 denoted EFAST-IRT, or a correlation structurghwthe inverse Nataf transformation [23], denoted
EFAST-INT (see Algorithm 3). The numerical tests shown ia gfaper confirm the suitability of both EFAST-IRT
and EFAST-INT.

The sampling strategy proposed by [21] allows for estintathre overall full first-order sensitivity indices and
the independent total sensitivity indices win + 2) (quasi) Monte Carlo samples. The sampling strategies gerpo
in [1] allows for assessing the four sensitivity indices Ibtlae input variables with 4 (quasi) Monte Carlo samples.
In the present work, we show that Zamples are sufficient to compute the four sensitivity iegliof all the inputs

with either EFAST-IRT or EFAST-INT.
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