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Several methods are proposed in the literature to perform the global sensitivity analysis of computer models with

independent inputs. Only a few allow for treating the case of dependent inputs. In the present work, we investigate

how to compute variance-based sensitivity indices with the Fourier amplitude sensitivity test. This can be achieved

with the help of the inverse Rosenblatt transformation or the inverse Nataf transformation. We illustrate so on two

distinct benchmarks. As compared to the recent Monte Carlo based approaches recently proposed by the same authors

in [1], the new approaches allow to divide by two the computational effort to assess the entire set of first-order and

total-order variance-based sensitivity indices.

KEY WORDS: Fourier amplitude sensitivity test; inverse Rosenblatt transformation; inverse Nataf

transformation; variance-based sensitivity indices; dependent contributions; independent contributions
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1. INTRODUCTION2

Good practice in computer model simulations requires that the uncertainties in the process under study be acknowl-3

edged. This is achieved by treating the model scalar inputs like random variables and functional inputs (temporally or4
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2 S. Tarantola, & T.A. Mara

spatially dependent) like stochastic fields [2,3]. Subsequently, the model responses are also random and their uncer-5

tainties can be assessed, among others, via Monte Carlo simulations. Global Sensitivity Analysis (GSA) of computer6

model responses usually accompanies the uncertainty assessment. It aims to point out the set of input factors that7

mainly contributes to the model responses uncertainty. Such an information is essential to indicate the modellers8

what is the subset of inputs upon which they should concentrate their effort in future works in order to obtain more9

accurate and relevant predictions.10

Several methods exist to perform GSA of model outputs when the inputs are independent [4]. The choice of the11

method to employ depends on the importance measure to be estimated. Two types of quantitative sensitivity mea-12

sures are of particular interest: the variance-based sensitivity measures [5] and the moment-independent sensitivity13

measures [6,7]. Numerical methods to assess these sensitivity measures can be classified as: non-parametric Monte14

Carlo approaches (among others, [8,9]), parametric spectral methods (likewise the Fourier amplitude sensitivity test15

[10,11]) or emulator-based approaches (e.g. [12,13]). Amongst the variance-based sensitivity measures, practitioners16

mostly focus on the first-order sensitivity index (also called correlation ratio [14,15]), that measures the marginal17

effect of one single input, and the total sensitivity index that accounts for the both marginal effects and interaction18

effects of the input of interest with the other ones [16]. Theinterested readers are referred to [17] for more details19

about the usefulness of these sensitivity measures in some GSA settings.20

Performing sensitivity analysis of computer models with dependent inputs is more challenging. Just like models21

can be of different natures (linear, non-linear, additive and non-additive), the dependence structure amongst the inputs22

can be of different natures too (linear, non-linear, pairwise and non-pairwise). In case of linear dependence structure,23

the inputs are said correlated. But in many cases, the dependence structure can be more complex. The latter is24

embedded in the joint probability distribution of the inputs and in their copula.25

The authors in [18] propose to distinguish the influence of aninput due to its correlation with the other variables,26

and the influence that is not due to its possible correlations. The idea is that if an input is not influential on its own27

(without accounting for its correlations with the other inputs) then it can be concluded that it is a spurious input, only28

influential because of its correlations. This concept was later on extended to the variance-based sensitivity measures29

in [1,19] and to the density-based sensitivity measure in [20].30

Kucherenko et al. [21] generalize the first-order and total Sobol’ indices for the case of computer models with31

dependent inputs. A non-parametric Monte Carlo approach isproposed to evaluate them based on the theory of32

Gaussian copula. Simultaneously, in [19] four new variance-based sensitivity measures are defined: two that account33

for the dependencies of an individual input with the other ones (the authors called them the first-order and total full34
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FAST for models with dependent input variables 3

sensitivity indices respectively) and two that do not account for the dependencies (called uncorrelated/independent35

first-order and total sensitivity indices respectively). Moreover, the authors show that the first-order sensitivity index36

generalized in [21] is the same as theirfull first-order sensitivity index(that accounts for correlations) while the37

generalized total sensitivity index of [21] is the same as their independent total sensitivity index(that does not account38

for correlations). Furthermore, two new variance-based indices namely thefull total sensitivity indexandindependent39

first-order sensitivity indexare also introduced in [19]. These four different sensitivity measures are discussed in the40

next Section.41

In [1], the new variance-based sensitivity measures are formally defined (see Eqs.(1-4)) and two non-parametric42

methods are proposed to estimate them. The first method uses sampling strategies in conjunction with the inverse43

Rosenblatt transformation [22] while the second method employs the inverse Nataf transformation [23]. The latter44

corresponds to the procedure of Iman and Conover when the target dependence structure is the correlation matrix45

instead of the rank correlation matrix as in their original paper [24] and the Gaussian-copula-based approach em-46

ployed in [21] for generating correlated samples. In [19], the polynomial chaos expansion method is employed to47

evaluate the four variance-based sensitivity measures. The latter is very efficient because it only requires one single48

input/output random sample. But it also requires a procedure to make the input sample at hand independent. For49

this purpose, the authors derive a specific procedure only valid for some specific correlation structures (like pairwise50

linear and non-linear correlations).51

Another idea is proposed in [25] that consists of distinguishing thecorrelativeeffect of a given input onto the52

computer model response from itsstructuraleffect. This can be achieved, for instance, by first identifying the model53

structure via an ANalysis Of VAriance decomposition in the Sobol’ sense (for ANOVA see [8]). For this purpose54

independence of the inputs is mandatory. Then, the structural and correlative effects can be inferred by analyzing55

the covariance structure of the ANOVA decomposition stemming from the correlation structure amongst the inputs.56

Caniou names this approach the ANCOVA (acronym for ANalysisof COVAriance) decomposition and the author57

uses the polynomial chaos expansion for prior ANOVA decomposition [26]. There are other approaches proposed in58

the literature that are not discussed here (the interested reader can refer to [27,28], among others).59

So far, no numerical approach has been proposed in the literature to compute the four variance-based sensitivity60

indices introduced in [19] with the Fourier Amplitude Sensitivity Test (FAST). One can cite [29] in which the author61

derives a cheap FAST-based approach to evaluate the independent first-order sensitivity index and the full first-order62

sensitivity index. One can also mention the early work of Xu and Gertner [30] that allows to assess the full first-order63

sensitivity index. Therefore, the proposed approaches areunable to account for interactions in computer models64
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4 S. Tarantola, & T.A. Mara

with dependent inputs. The present work aims to fill this gap.To this end, we show that the extended FAST [11]65

in conjunction with the inverse Rosenblatt transformation[22] or the inverse Nataf transformation [23] allows to66

compute the four sensitivity indices.67

The paper is organized as follows: we start by recalling the definitions of the variance-based sensitivity indices in68

the case of dependent inputs in Section 2. The link with the law of total variance is made in Section 3. In Section 4, we69

discuss the two transformations, namely, the inverse Rosenblatt transformation and the inverse Nataf transformation.70

Section 5 recalls the classical FAST method for models with independent inputs and then its extension to the case of71

dependent inputs is described. In Section 6, the new approaches are tested before concluding.72

2. DEFINITION OF THE SENSITIVITY INDICES73

Let f(x) be a square integrable function over ann-dimensional space wherex = {x1, · · · , xn} a continuous random74

vector defined by a joint probability density functionp(x). The scalarf(x) can be regarded, without loss of gener-75

ality, as the scalar response of a computer model to the inputset. In the sequel, we setx = (x1,x2) with x1 and76

x2 two non-empty subsets ofx. The importance ofx1 for f(x) can be measured with the variance-based sensitivity77

indices (also called Sobol’ indices,[5]). The Sobol’ indices can either measure the amount of variance off(x) due78

to x1 alone, or measure the amount of variance that also includes its interactions withx2. Besides, whenx1 andx279

are dependent, it is possible to distinguish the two possible types of contribution ofx1 to the variance off(x): i) the80

independent contribution that does not account for the dependence ofx1 with x2 and, ii) the full contribution that81

accounts for the dependence betweenx1 andx2. To the authors’ best knowledge, this concept was first introduced82

in [18] although the partial correlation coefficient of [31]is related to this concept. The variance-based sensitivity83

measures were defined in [19] for correlated variables and recently generalized in [1]. They are defined as follows:84

Sx1 =
V [E [f(x)|x1]]

V [f(x)]
, (1)

ST ind
x1

=
E [V [f(x)|x2]]

V [f(x)]
, (2)

Sind
x1

=
V [E [f(x)|x̄1)]]

V [f(x)]
, (3)

STx1 =
E [V [[f(x)|x̄2]]

V [f(x)]
, (4)

whereV [·] is the variance operator,E [·] is the mathematical expectation whileV [·|·] andE [·|·] are the conditional85

variance and expectation respectively.86
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FAST for models with dependent input variables 5

The variables with an overbar are conditional variables, therefore:x̄1 ∼ p
x1|x2(x1|x2) andx̄2 ∼ p

x2|x1(x2|x1).87

While the first two sensitivity indices Eqs.(1-2) are the classical definitions of the Sobol’ indices [21], the last two88

are only defined for dependent input variables. All these indices are scaled within[0, 1] and we haveSx1 ≤ STx1,89

Sind
x1

≤ ST ind
x1

.90

The full first-order sensitivity indexSx1 measures the amount of variance off(x) due tox1 and its dependence91

with x2 but does not include the interactions ofx1 with x2. The full total sensitivity indexSTx1 does account for these92

two types of contributions (dependence and interaction). The independent first-order sensitivity indexSind
x1

measures93

the contribution ofx1 by ignoring its correlations and interactions withx2 whileST ind
x1

accounts for interactions and94

ignores correlations. An inputxi can contribute to the model response variance only because of its strong correlations95

with the other inputs. In this case, we shall findSTxi
≥ 0 andST ind

xi
= 0.96

The authors in [1] propose two non-parametric methods to evaluate these sensitivity indices. The first approach97

consists of generating random samples of the dependent variables from the inverse Rosenblatt transformation while98

the second one uses the sampling technique of Iman and Conover [24]. The first approach is advisable when the99

conditional densitiesp
x1|x2 andp

x2|x1 are known while the procedure of Iman and Conover (IC) is to bepreferred100

when the marginal densities and the rank correlation structure of the input variables are known. We note that, when the101

target dependence structure is the correlation matrix, theIC procedure is equivalent to the Gaussian copula approach102

used in [21] and the inverse Nataf transformation describedin the present work.103

3. LINK WITH THE LAW OF TOTAL VARIANCE104

It is usual to define the Sobol’ indices from the law of total variance, namely105

V [f(x)] = V [E [f(x)|x1]] + E [V [f(x)|x1]] . (5)

Dividing this equation by the left-hand side term yields,106

1 = Sx1 + ST ind
x2

. (6)

In principal, Eq. (5) should be written as follows,107

Vx [f(x)] = Vx1 [Ex̄2 [f(x)|x1]] + Ex1 [Vx̄2 [f(x)|x1]] (7)
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6 S. Tarantola, & T.A. Mara

with the variables over which the conditional operators areapplied indicated in subscript. But in the case of indepen-108

dent variables, it is not necessary to indicate so and Eq. (5)(without subscript) is adopted for the sake of simplicity.109

However, such a precision is necessary when the variables are dependent because of the axiom of conditional proba-110

bilities: px(x) = px1(x1)px2|x1
(x2|x1) = px2(x2)px1|x2

(x1|x2). In effect, settinḡx1 = x1|x2 andx̄2 = x2|x1, one111

can also write the law of total variance as follows,112

Vx [f(x)] = Vx̄1 [Ex2 [f(x)|x̄1]] + Ex̄1 [Vx2 [f(x)|x̄1]] . (8)

Normalizing the latter equation, yields,113

1 = Sind
x1

+ STx2. (9)

The two different versions of the law of total variance hold because according to the axiom of conditional probabil-114

ities, x1 andx̄2 (resp. x̄1 andx2) are independent random vectors (i.e.p(x) = px1(x1)px̄2(x̄2)). Therefore, for115

the sake of clarity, the definitions of the Sobol’ indices in the case of dependent input variables should be written as116

follows,117

Sx1 =
Vx1 [Ex̄2 [f(x)|x1]]

V [f(x)]
, (10)

ST ind
x1

=
Ex2 [Vx̄1 [f(x)|x2]]

V [f(x)]
, (11)

Sind
x1

=
Vx̄1 [Ex2 [f(x)|x̄1)]]

V [f(x)]
, (12)

STx1 =
Ex̄2 [Vx1 [[f(x)|x̄2]]

V [f(x)]
. (13)

4. TWO PROBABILISTIC TRANSFORMATIONS118

4.1 The inverse Rosenblatt transformation119

It is shown in [1] that the Rosenblatt transformation [22] isthe key for estimating the four sensitivity indices defined120

in Eqs.(1-4). Indeed, the Inverse Rosenblatt Transformation (IRT) provides a set of dependent variables(x1,x2) from121

a set of independent random vectors(u1,u2) uniformly distributed over the unit hypercubeKn = [0, 1]n. Assuming122
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FAST for models with dependent input variables 7

that(x1,x2) is a vector of continuous random variables, the inverse Rosenblatt transformation writes,123











x2 = F−1
x2

(u2)

x̄1 = F−1
x1|x2

(u1|u2)
(14)

where,F−1
x2

is the inverse cumulative density function ofx2 (that is, px2 = dFx2/dx2) andF−1
x1|x2

is the one124

of x̄1 (that is,p
x1|x2 = ∂F

x1|x2/∂x1). IRT simply exploits the axiom of conditional probabilities: p(x1,x2) =125

p
x1|x2(x1|x2)px2(x2) but is not unique. Indeed, as already aforementioned, one can also writep(x1,x2) = p

x2|x1(x2|x1)126

px1(x1), which yields the following transformation,127











x1 = F−1
x1

(u1)

x̄2 = F−1
x2|x1

(u2|u1)
. (15)

To generate the sets(x̄1,x2) and(x1, x̄2) from these two transformations, an independent set(u1,u2) uniformly128

distributed over the unit hypercube is required. This is efficiently performed with, for instance the LPτ sequences of129

[32]. Using(x̄1,x2) and(x1, x̄2), one can estimate the sensitivity measures defined in Eqs.(1-4) as shown in [1].130

4.2 The inverse Nataf transformation131

The application of IRT requires the knowledge of the conditional probability densities. In many situations, only the132

individual cumulative densities (i.e.Fxj
(xj), ∀j ∈ [[1, n]]) and the correlation matrixRx are known. In this case, the133

inverse Nataf transformation (INT) is more suitable than IRT to generate samples with correlation approaching the134

desired matrixRx. It is worth mentioning that the procedure of Iman and Conover [24] and the Gaussian copula-135

based approach employed in [21] are tantamount to INT. The latter uses a set of correlated standard normal variables136

z
c = (zc1, . . . , z

c
n) with correlation matrixRz and generates the desired correlated random variables as follows,137

xj = F−1
xj

(Φ(zcj )), ∀j = 1, . . . , n (16)

whereΦ is the cumulative density function of the standard normal variable. We note that transformation (16) implies138

thatxj andzcj have identical ranking. Therefore, INT is equivalent to theprocedure of [24]. However, INT and the139

original IC procedure differ in the fact that the former generates samples ofx w.r.t. the correlation matrixRx whereas140

the latter generates samples w.r.t. the rank correlation matrix of x. Consequently, INT is a bit more complicated than141

Volume x, Issue x, 2017



8 S. Tarantola, & T.A. Mara

the original IC procedure. We note that Eq. (16) is also employed in the theory of Gaussian copula (see [21]).142

Samplingx with INT requires to generatezc with the desired correlation matrixRz. This is achieved with the143

Cholesky transformation. Let us denote byL the lower triangular matrix such thatRz = LL
T , the superscriptT144

stands for the transpose operator. This decomposition is possible becauseRz is positive-semidefinite. Then, from an145

independent standard normal vectorz, the correlated standard normal vectorz
c is obtained as follows,146

z
c = zL

T . (17)

The issue with this approach is to findRz such thatx has the desired correlation matrixRx. This can be achieved147

with an optimization scheme in whichRz is iteratively adjusted until the correlation matrix ofx satisfactorily matches148

Rx [33]. The relationship betweenRz andRx is discussed for some densities in [34].149

5. THE FOURIER AMPLITUDE SENSITIVITY TEST150

5.1 The classical FAST for independent variables151

FAST was introduced in [10] to compute the individual first-order sensitivity index for models with independent152

inputs (Eq. (1) withx1 = xi). In FAST input values are sampled over a periodic curve thatexplores the input space.153

Each input is associated with a distinct integer frequency.The periodic sampled values are propagated through the154

model. Then, the Fourier transform of the model output is computed. The Parseval-Plancherel theorem allows to155

compute the variance-based sensitivity indices via the Fourier coefficients evaluated at specific frequencies. The156

individual first-order sensitivity index of a given input uses the Fourier coefficients of the associated frequency and157

its higher harmonics (see Algorithm 1).158

The setω = {ω1, . . . ,ωn} of integer frequencies must be chosen in order to avoid interferences between159

higher harmonics. This is possible up to a given interference orderM . Cukier et al. [35] provides an algorithm to160

generate such a set of frequencies for prescribedM andn. In practice,N draws of the input values are generated161

by discretizings as follows:sk = 2kπ
N , k = 1, . . . , N . With classical FAST, all first-order sensitivity indices can be162

obtained with only one set of model runsN . The Nyquist criterion imposes thatN ≥ 2M×max(ω)+1. Therefore,163

the dimension of the modeln and the choice of the interference factorM , considerably impact the number of model164

runsN and also complicate the choice of an interference-free set of frequencies. To circumvent this problem, the165

random balance design trick of [36] was extended to FAST in [37]. Algorithm 1 describes the steps to perform the166

classical FAST approach.167

International Journal for Uncertainty Quantification



FAST for models with dependent input variables 9

Algorithm 1 : The classical FAST procedure

1. Setuj(s) =
1
2 + 1

π arcsin(sin(ωjs+ϕj)) ∀j ∈ [[1, n]], with s varying uniformly over(0, 2π], ϕj ∈ (0, 2π] is
a randomly chosen shift parameter andωj is an integer frequency

2. Perform the transformationxj = F−1(uj), ∀j = 1, . . . , n to getxj ∼ pxj
(xj)

3. Evaluatef(x(s)) and compute the Fourier coefficients,

cω =
1
π

∫ 2π

0
f(x(s))e−iωsds, ∀ω ∈ N

∗ (18)

4. Compute the first-order sensitivity indices,

SFAST
xi

=

∑+∞
l=1 |clωi

|2
∑+∞

ω=1 |cω|2
, ∀i = 1, . . . , n. (19)

To compute the total sensitivity index ofxi, that isSTxi
, Saltelli et al. [11] propose to assign a high frequency to168

xi (typically ωi = 2M ×max(ω∼i), whereω∼i = ω/ωi) and small values to the other frequenciesω∼i. These169

latter do not need to be free of interferences although recommended. Consequently, in the Fourier spectrum of the170

model response the amount of variance attributed toxi (including its marginal effects and its interactions with the171

other inputs) is localized in the high frequency range (ω > M ×max(ω∼i)). The total sensitivity index is estimated172

as follows:173

ŜT xi
=

∑N/2
ω=

ωi
2 +1

|ĉω|2
∑N/2

ω=1 |ĉω|2
(20)

with ĉω = 2
N

∑N
k=1 f(x(sk))e

−iωsk an estimator of Eq. (18).174

The drawback of the proposed approach (called EFAST) is thatthe computational effort to estimate(Sxi
, STxi

)175

is high since the Nyquist criterion imposes thatN > 2Mωi. But, Sxi
can be estimated simultaneously withSTxi

176

(i.e. with no extra cost). Hence,n × N model runs are necessary to compute all individual first-order and total177

sensitivity indices. The author in [38] proposes a slight different version of EFAST that do not alleviate much the178

computational burden, but allows for the calculation of thetotal sensitivity indices for groups of inputs.179

5.2 EFAST and the inverse Rosenblatt transformation180

Using EFAST and IRT it is possible to derive an algorithm to compute the variance-based sensitivity indices in the181

case of dependent input variables (from now on, this procedure is named EFAST-IRT). Indeed, in the both EFAST182

and IRT algorithms the vectorx is generated from uniformly and independently distributedvariables. Consequently,183

Volume x, Issue x, 2017



10 S. Tarantola, & T.A. Mara

Algorithm 2 : EFAST with the inverse Rosenblatt transformation (EFAST-IRT)

1. SetM (usually 4 or 6 but sometimes even 10 if we know a priori that the model has strong non linearities).
Select a set ofn− 1 integer frequenciesω∼i and inferωi = 2M max(ω∼i)

2. Generateuj =
1
2 + 1

π arcsin(sin(ωjs+ ϕj)), ∀j = 1, . . . , n

3. Generate the vectorx from IRT (Eq. (15)) withx1 = xi andx̄2 = x∼i

4. Run the model and save the model responses of interestf(x)

5. Compute the Fourier coefficients and deduce the variance-based sensitivity indices as follows,

Ŝxi
=

∑M
l=1 |ĉlωi

|2
∑N/2

ω=1 |ĉω|2
(22a)

ŜTxi
=

∑N/2
ω=

ωi
2 +1

|ĉω|2
∑N/2

ω=1 |ĉω|2
. (22b)

one can take advantage of the (deterministic) periodical sampling of EFAST to generate the dependent variables in184

conjunction with IRT. The new algorithm to compute (Sxi
, STxi

) is given by algorithm 2.185

It can be noticed that one sample of sizeN > 2Mωi is necessary to compute both indices for a givenxi and186

n × N model runs are necessary to compute all first order and total sensitivity indices. To evaluate the independent187

sensitivity indices (Sind
xi

, ST ind
xi

) one must proceed as just shown by operating the inverse Rosenblatt transformation188

from Eq. (14) withx̄1 = xi andx2 = x∼i. The sensitivity indices are estimated as previously, namely,189

Ŝind
xi

=

∑M
l=1 |ĉlωi

|2
∑N/2

ω=1 |ĉω|2
(21a)

ŜT
ind

xi
=

∑N/2
ω=

ωi
2 +1

|ĉω|2
∑N/2

ω=1 |ĉω|2
. (21b)

Using samples of sizeN , an overall of 2N × n model runs are necessary to compute the four sensitivity indices190

(Sxi
, STxi

, Sind
xi

, ST ind
xi

), ∀i = 1, . . . , n. As compared to the non-parametric methods described in [1], which require191

4N × n samples to compute the same set of sensitivity indices, the computational effort is halved.192

5.3 EFAST and the inverse Nataf transformation193

The algorithm to perform GSA via the inverse Nataf transformation (from now on named EFAST-INT) is more subtle194

than with IRT. Indeed, the calculation of(Sxi
, STxi

) or (Sind
xi

, ST ind
xi

) depends on the position ofzi in the vectorz195

International Journal for Uncertainty Quantification
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Algorithm 3 : EFAST with the inverse Nataf transformation (EFAST-INT)

1. Choose a value forM and seti = 1. Select a set ofn− 1 integer frequenciesω∼i and set
ωi = 2M max(ω∼i)

2. Generateuj =
1
2 + 1

π arcsin(sin(ωjs+ ϕj)), ∀j = 1, . . . , n with s regularly sampled over(0, 2π] usingN
points

3. Deduce the independent standard normal variables,zj = Φ−1(uj), ∀j = 1, . . . , n. Consider the following
vector orderingz = (zi, z∼i) to estimateSxi

andSTxi
(resp.z = (z∼i, zi) to estimateSind

xi
andST ind

xi
)

4. SetRz = Rx

5. FindL, getzc from Eq. (17) and generatex from Eq. (16)

6. Calculate the sample correlation matrixR̂x from the samplex. If R̂x is not satisfactory, in the sense that it is
not close enough to the desired correlation structureRx, modifyRz and resume from 5, otherwise, continue

7. Run the model onx and save the model responses of interestf(x). Finally, compute the variance-based

sensitivity indices(Ŝxi
, ŜTxi

) (resp.(Ŝind
xi

, ŜT
ind

xi
)) as in Eq. (22) (resp. Eq. (21))

8. if i = n then stop. Otherwise, seti = i+ 1,Rx = PRxP
T and resume from 3.

of standard normal variables used in the Cholesky transformation (Eq. (17)). As explained in [1], if we consider the196

set(zi, z∼i) and apply the Cholesky transformation,(Sxi
, STxi

) can be computed. If the Cholesky transformation197

is applied to the set(z∼i, zi), then(Sind
xi

, ST ind
xi

) can be obtained. In both cases, EFAST-INT assigns the highest198

frequencyωi to zi.199

The procedure must also include an algorithm to find the optimal Rz that produces a sample with the desired200

correlation matrixRx. GivenRx the correlation matrix and the marginal densities of each input variables, EFAST-201

INT proceeds as in Algorithm 3 in which the following permutation matrix is employed,202

P =







0 e
T
n−1

en−1 In−1






(23)

with e
T
n−1 = (0, . . . , 1) andIn−1 the(n− 1)× (n− 1) identity matrix.203

The entire set of sensitivity indices(Ŝxi
, ŜTxi

, Ŝind
xi

, ŜT
ind

xi
), ∀i = 1 . . . , n are obtained with 2n samples204

of sizeN by considering circular permutations of the setz = (z1, . . . , zn). More specifically, considering the205

set (z1, z2, . . . , zn), with one sample(Ŝx1, ŜTx1) can be evaluated by assigning the highest frequency tou1, and206

with another sample(Ŝind
xn

, ŜT
ind

xn
) are obtained by assigning the highest frequency toun. By considering the set207

(z2, . . . , zn, z1) and the correlation matrix associated to(x2, . . . , xn, x1), (Ŝx2, ŜT x2, Ŝ
ind
x1

, ŜT
ind

x1
) can be estimated208
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with other two samples, and so on. At thei-th iteration, step 8) transforms the correlation matrixRx so that the latter209

corresponds to the correlation matrix of the circularly permuted vector(xi, xi+1, . . . , xn, x1, . . . , xi−1).210

6. NUMERICAL TEST CASES211

6.1 Example with EFAST-IRT212

To illustrate the EFAST-IRT approach, let us consider the following non-linear function:f(x) = x1x2 + x3x4 where213

(x1, x2) ∈ [0, 1]2 is uniformly distributed within the trianglex1+x2 ≤ 1 and(x3, x4) ∈ [0, 1]2 is uniformly distributed214

within the trianglex3 + x4 ≥ 1. This function was studied in [1] with an non-parametric approach based on Quasi-215

Monte Carlo sampling. The inverse Rosenblatt transformation that yields(x1, x2) in the domainx1 + x2 ≤ 1 from216

the independent variables(u1, u2) ∈ [0, 1]2 is (see details in [1]),217











x1 = 1−
√

1− u1

x2 = u2
√

1− u1

. (24)

Because of the symmetry, the IRT of(x2, x1) is obtained by simply invertingx1 andx2 in Eq. (24). In the same way,218

the IRT of(x3, x4) writes,219










x3 =
√
u3

x4 = (u4 − 1)
√
u3 + 1

. (25)

The symmetry of the problem implies that the sensitivity indices ofx1 andx2 are equal, as well as those ofx3220

andx4. We have computed 100 replicate estimates of these indices with the EFAST-IRT approach. This has been221

achieved by randomly drawing the four shift parameters{ϕi, i = 1, . . . , 4} at each replication. We imposed a sample222

sizeN = 4 095, which corresponded to a total number of function callsper replicate equal to 4× 4, 095= 16 380,223

and we selectedM = 8. Consequently,ωi = (N − 1)/M = 255. Finally, we chose the following set of low224

frequenciesω∼i = (5, 9, 14), although other choices were equally suitable.225

Fig. 1 depicts a few draws obtained with EFAST-IRT. We note that the input values are sampled accordingly with226

the desired constraints. The sample fills the input space quite well. Tab. 1 shows good agreement between the mean227

estimates of the sensitivity indices and the analytical values. The results indicate that(x3, x4) are the most relevant228

inputs for the response variance.229

By referring to the work of [1], it can be inferred that one possible ANOVA decomposition (in the Sobol’ sense230
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[5]) of f(x) is:231

f(x) = f0 + f1(x1) + f2̄(x̄2) + f1̄2(x1, x̄2) + f3(x3) + f4̄(x̄4) + f3̄4(x3, x̄4) (26)

where the functions in Eq. (26) have the same properties thanthose of the Sobol’s ANOVA decomposition [5]. In232

particular, they are orthogonal. This property of orthogonality allows to cast the variance off(x), denotedV , as233

follows:234

V = V1 + V ind
2 + V12 + V3 + V ind

4 + V34 (27)

with Vi = E[f2
i (xi)], V ind

i = E[f2
ī
(x̄i)] andVij = E[f2

ij(xi, x̄j)]. By denotingV Ti = Vi+Vij yields the following235

variance decomposition,236

Vy = V T1 + V ind
2 + V T3 + V ind

4 . (28)

The normalization of the latter equation byV yields the following relationship between the variance-based sensitivity

indices,

STx1 + Sind
x2

+ STx3 + Sind
x4

= 1.

The analytical variance-based sensitivity indices reported in Tab. 1 satisfy this relationship. Moreover, we can infer237

thatSTx1 + Sind
x2

= 0.10, which indicates that the pair(x1, x2) explains 10% of the response variance since the pairs238

(x1, x2) and(x3, x4) are independent.239

TABLE 1: One hundred replicate estimates of the sensitivity indicescomputed with EFAST-IRT.

Sx1 STx1 Sind
x2

ST ind
x2

Sx3 STx3 Sind
x4

ST ind
x4

Analytical 0.033 0.044 0.056 0.067 0.233 0.400 0.500 0.666

E
FA

S
T-

IR
T 2.5th perc. 0.028 0.043 0.051 0.066 0.209 0.361 0.475 0.639

mean 0.032 0.048 0.055 0.071 0.226 0.395 0.497 0.669
97.5th perc. 0.037 0.056 0.061 0.077 0.248 0.448 0.523 0.705

6.2 The Ishigami function with EFAST-INT240

The Ishigami function is one of the benchmarks model for assessing the efficiency of GSA methods [39]. It has been241

intensively used by statisticians to test their sensitivity analysis approaches in the case of independent inputs (e.g.242

[40,41], among others). Recently, the authors in [21] introduced a new method for computingSxi
andST ind

xi
in the243

case of models with correlated inputs and tested it on the Ishigami function. We repeat here the same example with244
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FIG. 1: Some draws obtained with FAST after the inverse Rosenblatt transformation. We havex1 + x2 ≤ 1 (blue circles) and
x3 + x4 ≥ 1 (red stars).

EFAST-INT but compute(Sxi
, ST ind

xi
, Sind

xi
, STxi

), ∀i = 1, 2, 3. The Ishigami function writes,245

f(x) = sin x1 + 7sin2 x2 + 0.1x4
3 sinx1 (29)

with input variables being uniformly distributed:−π ≤ xi ≤ π, i = 1, 2, 3. Note that this function is non-linear in all246

inputs andx2 does not interact with the other two variables. Although this function has a low dimension (three inputs247

only), it is a challenging function for EFAST because the last term, which represents the interaction betweenx1 and248

x3, is strongly non-linear and its Fourier coefficients have considerable amplitudes at high frequencies. This strong249

non-linearity led us to choose a considerably high value ofM . The difficulty of the test was emphasized because a250

correlationr13 ∈]− 1, 1[ was imposed betweenx1 andx3.251

Likewise the previous exercise, 100 replication estimatesof the sensitivity indices were performed. The design252
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of the EFAST-INT was the following:M = 15,N = 8 191,ω∼i = (5, 8) andωi = 273. We chose higherN here253

than in the previous example because of the strong non-linearities mentioned above. Following the work of [21], the254

exercise was conducted by varying the correlation coefficient r13 within ]− 1, 1[.255

The results are depicted in Fig. 2. To our best knowledge, no analytical sensitivity indices are available for this256

test function. We can infer that, becausex2 is not correlated to the other two inputs, its full and independent sensitivity257

indices are equal. Besides, becausex2 does not interact with the other two inputs, its total and first-order indices are258

also equal. Moreover, we note that the full indexSxi
is always greater or equal to the independent indexSind

xi
(resp.259

STxi
≥ ST ind

xi
). However, we may also findSind

xi
> Sxi

(or ST ind
xi

> STxi
) as also shown in the previous exercise260

(see Tab. 1).261

As far asx1 andx3 are concerned we note that, when the correlation coefficientis zero, as expected the full and262

independent sensitivity indices are equal. Whenr13 is close to±1, the independent sensitivity indices (both first and263

total order) ofx1 andx3 are null. This makes sense because ifr13 = ±1, then all the information inf(x) is captured264

by only one of the pairs(x1, x2) or (x2, x3). Indeed, in this case,x1 andx3 contain the same information and it is265

not possible to distinguish their individual contributions in the model response. This finding is peculiarly important266

for the modeller as it indicates that the output uncertaintyis explained by one of these two pairs only, thus, allowing267

some kind of dimensionality reduction. Indeed, the modeller now knows that to obtain narrower output uncertainty,268

he/she should pay some further effort to reduce the uncertainty either in the pair(x1, x2) or in (x2, x3).269
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FIG. 2: The variance-based sensitivity indices estimated with EFAST-INT versus the correlation coefficient betweenx1 andx3.
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7. CONCLUSION270

Performing global sensitivity analysis of model output with dependent inputs is a challenging issue. Variance-based271

sensitivity indices have been defined in [1,19,21] and different approaches have been proposed to estimate them. Four272

types of sensitivity indices can be of interest: (i) the fullfirst-order (resp. full total) sensitivity index that measures273

the amount of model response variance explained by an input factor which takes into account its dependence with the274

other inputs; (ii) the full total-order sensitivity index that measures the amount of model response variance explained275

by an input factor which takes into account the both its dependence and interactions with the other inputs; (iii)276

the independent first-order sensitivity index of an input that measures its relative contribution alone to the response277

variance by ignoring its dependence with the other inputs; and finally (iv) the independent total-order sensitivity index278

of an input that measures its relative contribution to the response variance by ignoring its dependence with the other279

input variables but by accounting for its interactions withthe latter.280

The Fourier amplitude sensitivity test is one of the first methods for variance-based global sensitivity analysis281

[10]. Since that, the method has been extended by several authors [11,29,30,37,38]. Specifically, in [30] FAST has282

been adapted to account for correlations among inputs by using the sampling technique of Iman and Conover [24].283

In this work, we extend FAST to compute the four sensitivity indices defined above. The main idea of our approach284

is to impose either a dependence structure amongst the inputs with the inverse Rosenblatt transformation [22], with285

Algorithm 2 denoted EFAST-IRT, or a correlation structure with the inverse Nataf transformation [23], denoted286

EFAST-INT (see Algorithm 3). The numerical tests shown in the paper confirm the suitability of both EFAST-IRT287

and EFAST-INT.288

The sampling strategy proposed by [21] allows for estimating the overall full first-order sensitivity indices and289

the independent total sensitivity indices with(2n+2) (quasi) Monte Carlo samples. The sampling strategies proposed290

in [1] allows for assessing the four sensitivity indices of all the input variables with 4n (quasi) Monte Carlo samples.291

In the present work, we show that 2n samples are sufficient to compute the four sensitivity indices of all the inputs292

with either EFAST-IRT or EFAST-INT.293
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