Diffusion-approximation in stochastically forced kinetic equations - Archive ouverte HAL
Article Dans Une Revue Tunisian Journal of Mathematics Année : 2021

Diffusion-approximation in stochastically forced kinetic equations

Résumé

We derive the hydrodynamic limit of a kinetic equation where the interactions in velocity are modeled by a linear operator (Fokker–Planck or linear Boltzmann) and the force in the Vlasov term is a stochastic process with high amplitude and short-range correlation. In the scales and the regime we consider, the hydrodynamic equation is a scalar second-order stochastic partial differential equation. Compared to the deterministic case, we also observe a phenomenon of enhanced diffusion.
Fichier principal
Vignette du fichier
Debussche-Vovelle-TJM.pdf (500.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01567138 , version 1 (21-07-2017)
hal-01567138 , version 2 (13-11-2017)
hal-01567138 , version 3 (22-03-2018)
hal-01567138 , version 4 (07-06-2019)
hal-01567138 , version 5 (30-01-2020)
hal-01567138 , version 6 (17-03-2020)

Identifiants

Citer

Arnaud Debussche, Julien Vovelle. Diffusion-approximation in stochastically forced kinetic equations. Tunisian Journal of Mathematics, 2021, 3 (1), pp.1-53. ⟨10.2140/tunis.2021.3.1⟩. ⟨hal-01567138v6⟩
771 Consultations
355 Téléchargements

Altmetric

Partager

More