Quantitative estimates of sampling constants in model spaces - Archive ouverte HAL
Article Dans Une Revue American Journal of Mathematics Année : 2020

Quantitative estimates of sampling constants in model spaces

Andreas Hartmann
Karim Kellay

Résumé

We establish quantitative estimates for sampling (dominating) sets in model spaces associated with meromorphic inner functions, i.e. those corresponding to de Branges spaces. Our results encompass the Logvinenko-Sereda-Panejah (LSP) Theorem including Kovrijkine's optimal sampling constants for Paley-Wiener spaces. It also extends Dyakonov's LSP theorem for model spaces associated with bounded derivative inner functions. Considering meromorphic inner functions allows us to introduce a new geometric density condition, in terms of which the sampling sets are completely characterized. This, in comparison to Volberg's characterization of sampling measures in terms of harmonic measure, enables us to obtain explicit estimates on the sampling constants. The methods combine Baranov-Bernstein inequalities, reverse Carleson measures and Remez inequalities .
Fichier principal
Vignette du fichier
HJK20170721.pdf (771.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01566472 , version 1 (21-07-2017)

Identifiants

Citer

Andreas Hartmann, Philippe Jaming, Karim Kellay. Quantitative estimates of sampling constants in model spaces. American Journal of Mathematics, 2020, 142 (4), pp.1301-1326. ⟨hal-01566472⟩

Collections

CNRS IMB INSMI ANR
212 Consultations
265 Téléchargements

Altmetric

Partager

More