Report Transfer Learning of Deep Convolutional Network on Twitter - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2017

Report Transfer Learning of Deep Convolutional Network on Twitter

Résumé

This report aims at showing the capacity of transfering a deep neural network on char-level on massive dataset Twitter, using distant supervision. We showed that more data could help for the Stanford140 dataset. The best overal result observed is 84% of transfer learning for two sentiment polarity classes (positive-negative) from 16M emoticons subjective SESAMm dataset to small SemEval 2013 dataset. Other learning of three classes (with neutral) or nine classes based on emoticons (happy, laughing, kisswink, playful, sad, horror, shock, annoyed, hesitated) didn't show any advantages yet in the study.
Fichier principal
Vignette du fichier
Rapport-Transfer-Learning.pdf (745.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01562179 , version 1 (13-07-2017)

Identifiants

  • HAL Id : hal-01562179 , version 1

Citer

Hoa T Le, Christophe Cerisara, Alexandre Denis. Report Transfer Learning of Deep Convolutional Network on Twitter. [Research Report] Loria & Inria Grand Est. 2017. ⟨hal-01562179⟩
628 Consultations
271 Téléchargements

Partager

More