Self-Adjointness of Dirac Operators with Infinite Mass Boundary Conditions in Sectors - Archive ouverte HAL
Article Dans Une Revue Annales Henri Poincaré Année : 2018

Self-Adjointness of Dirac Operators with Infinite Mass Boundary Conditions in Sectors

Résumé

This paper deals with the study of the two-dimensional Dirac operator with infinite mass boundary condition in a sector. We investigate the question of self-adjointness depending on the aperture of the sector: when the sector is convex it is self-adjoint on a usual Sobolev space whereas when the sector is non-convex it has a family of self-adjoint extensions parametrized by a complex number of the unit circle. As a byproduct of this analysis we are able to give self-adjointness results on polygones. We also discuss the question of distinguished self-adjoint extensions and study basic spectral properties of the operator in the sector.
Fichier principal
Vignette du fichier
BOLT17.pdf (306.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01561490 , version 1 (12-07-2017)
hal-01561490 , version 2 (11-07-2018)

Identifiants

Citer

Loïc Le Treust, Thomas Ourmières-Bonafos. Self-Adjointness of Dirac Operators with Infinite Mass Boundary Conditions in Sectors. Annales Henri Poincaré, 2018, 19 (5), pp.1465 - 1487. ⟨10.1007/s00023-018-0661-y⟩. ⟨hal-01561490v2⟩
531 Consultations
385 Téléchargements

Altmetric

Partager

More