COMBINATORICS OF GENERALIZED EXPONENTS - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2020

COMBINATORICS OF GENERALIZED EXPONENTS

Résumé

We give a purely combinatorial proof of the positivity of the stabilized forms of the generalized exponents associated to each classical root system. In finite type An−1, we rederive the description of the generalized exponents in terms of crystal graphs without using the combinatorics of semistandard tableaux or the charge statistic. In finite type Cn, we obtain a combinatorial description of the generalized exponents based on the so-called distinguished vertices in crystals of type A2n−1, which we also connect to symplectic King tableaux. This gives a combinatorial proof of the positivity of Lusztig t-analogues associated to zero weight spaces in the irreducible representations of symplectic Lie algebras. We also prove a related conjecture of the first author as an application, and discuss some implications to relating two type C branching rules. Our methods are expected to extend to the orthogonal types.
Fichier principal
Vignette du fichier
HLzeroWeightCombi.pdf (460.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01560815 , version 1 (12-07-2017)

Identifiants

Citer

Cédric Lecouvey, Cristian Lenart. COMBINATORICS OF GENERALIZED EXPONENTS. International Mathematics Research Notices, 2020, 2020 (16), pp.4942-4992. ⟨10.1093/imrn/rny157⟩. ⟨hal-01560815⟩
95 Consultations
113 Téléchargements

Altmetric

Partager

More