A Game-Theoretic View of Randomized Fair Multi-Agent Optimization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2017

A Game-Theoretic View of Randomized Fair Multi-Agent Optimization

Hugo Gilbert
Olivier Spanjaard

Résumé

We tackle fair multi-agent optimization problems and use a generalized Gini index to determine a fair and efficient solution. We claim that considering mixed solutions (i.e., lotteries over solutions) enables to enhance the fairness of an optimal solution. Interpreting a fair multi-agent optimization problem as a zero-sum two-player game between an optimization player choosing a solution and an adversary which has some control over the payoffs of the game, we propose two methods (a cutting-plane method and a double oracle method) to compute an optimal mixed solution. Numerical tests are provided to compare their efficiency.
Fichier principal
Vignette du fichier
agt17.pdf (391.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01560545 , version 1 (11-07-2017)

Identifiants

  • HAL Id : hal-01560545 , version 1

Citer

Hugo Gilbert, Olivier Spanjaard. A Game-Theoretic View of Randomized Fair Multi-Agent Optimization. The 3rd IJCAI Algorithmic Game Theory Workshop, Aug 2017, Melbourne, Australia. ⟨hal-01560545⟩
281 Consultations
173 Téléchargements

Partager

More