Hierarchical structures based on self-assembled diblock copolymers within honeycomb micro-structured porous films - Archive ouverte HAL
Article Dans Une Revue Soft Matter Année : 2010

Hierarchical structures based on self-assembled diblock copolymers within honeycomb micro-structured porous films

Résumé

This article details the preparation of hierarchically ordered microporous films using the so-called breath figure approach combined with the self-assembly of well-defined poly(n-butyl acrylate)-block-polystyrene or poly(tert-butyl acrylate)-block-polystyrene copolymers synthesized by nitroxide-mediated polymerization. The first level of organization was the hexagonal pattern of pores at the micrometre length scale leading to iridescence properties and surface hydrophobicity of the honeycomb structured films. Optical microscopy with the corresponding 2-Dimensional Fast Fourier Transform highlighted the ordering of the pores over a large scale (∼1 cm2). The second level of structuring was provided by the diblock copolymers chosen for their ability to self-assemble into ordered nanophases. The nanoscale morphology of both the honeycomb films and the corresponding thermally annealed continuous films was systematically investigated by atomic force microscopy (AFM) and small angle neutron scattering (SANS). The film characterization revealed a nanostructuration of the acrylate-based coil-coil diblock copolymer within the walls of the highly ordered microporous films obtained via a simple solvent evaporation method under humid atmosphere. The four synthesized diblock copolymers exhibited different macromolecular features with respect to the Flory-Huggins interaction parameter, the glass transition temperature of each block and the weight fraction of each monomer that influenced the quality of either the micropores structuration or the nanophase segregation.

Dates et versions

hal-01560399 , version 1 (11-07-2017)

Identifiants

Citer

P. Escalé, Maud Save, A. Lapp, Laurent Rubatat, Laurent Billon. Hierarchical structures based on self-assembled diblock copolymers within honeycomb micro-structured porous films. Soft Matter, 2010, 6 (14), pp.3202-3210. ⟨10.1039/c0sm00029a⟩. ⟨hal-01560399⟩
25 Consultations
0 Téléchargements

Altmetric

Partager

More