Effective training of convolutional neural networks for face-based gender and age prediction - Archive ouverte HAL Access content directly
Journal Articles Pattern Recognition Year : 2017

Effective training of convolutional neural networks for face-based gender and age prediction

Abstract

Convolutional Neural Networks (CNNs) have been proven very effective for human demographics estimation by a number of recent studies. However, the proposed solutions significantly vary in different aspects leaving many open questions on how to choose an optimal CNN architecture and which training strategy to use. In this work, we shed light on some of these questions improving the existing CNN-based approaches for gender and age prediction and providing practical hints for future studies. In particular, we analyse four important factors of the CNN training for gender recognition and age estimation: (1) the target age encoding and loss function, (2) the CNN depth, (3) the need for pretraining, and (4) the training strategy: mono-task or multi-task. As a result, we design the state-of-the-art gender recognition and age estimation models according to three popular benchmarks: LFW, MORPH-II and FG-NET. Moreover, our best model won the ChaLearn Apparent Age Estimation Challenge 2016 significantly outperforming the solutions of other participants.
No file

Dates and versions

hal-01556389 , version 1 (05-07-2017)

Identifiers

Cite

Grigory Antipov, Moez Baccouche, Sid-Ahmed Berrani, Jean Luc Dugelay. Effective training of convolutional neural networks for face-based gender and age prediction. Pattern Recognition, 2017, 72, pp.15-26. ⟨10.1016/j.patcog.2017.06.031⟩. ⟨hal-01556389⟩

Collections

CNRS EURECOM
186 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More