Acoustic diffraction patterns from regular to fractal structures: application to the Sierpinski carpet - Archive ouverte HAL
Chapitre D'ouvrage Année : 2005

Acoustic diffraction patterns from regular to fractal structures: application to the Sierpinski carpet

Résumé

The concept of fractal geometry, introduced by Mandelbrot has been explored in diverse areas of science, including acoustics [1]. First part of this work relates the properties of far-field Fraunhofer region diffraction in wave acoustics for characterizing reflection on a periodic regular indented plane. Diffusion prediction of a self-similar structure, the Sierpinski carpet, is then developed through the computation of its spatial Fourier transform. Scattering intensity computation results show that after propagation of a coherent plane wave through the structure, the resulting acoustical field displays fractal properties itself, showing a self-similar structure of the reflected signal. This computational approach of the Sierpinski carpet's scattering properties will lead us to develop, in a near future, an acoustic angular scattering measurement process, applied to a Sierpinski tetrahedron 3-D scale model.
Fichier principal
Vignette du fichier
FE05woloszyn43.pdf (600.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01555279 , version 1 (03-07-2017)

Identifiants

Citer

Philippe Woloszyn. Acoustic diffraction patterns from regular to fractal structures: application to the Sierpinski carpet. Jacques Lévy-Véhel and Evelyne Lutton. Fractals in Engineering. New Trends in Theory and Applications, Springer Verlag, pp.97, 2005, 1-84628-047-8. ⟨10.1007/1-84628-048-6_7⟩. ⟨hal-01555279⟩
779 Consultations
931 Téléchargements

Altmetric

Partager

More