How plot shape and spatial arrangement affect plant species richness counts: implications for sampling design and rarefaction analyses - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Vegetation Science Année : 2016

How plot shape and spatial arrangement affect plant species richness counts: implications for sampling design and rarefaction analyses

Résumé

Questions How does the spatial configuration of sampling units influence recorded plant species richness values at small spatial scales? What are the consequences of these findings for sampling methodology and rarefaction analyses? LocationSix semi-natural grasslands in Western Eurasia (France, Germany, Bulgaria, Hungary, Italy, Turkey). MethodsIn each site we established six blocks of 40cm x280cm, subdivided into 5cm x5cm micro-quadrats, on which we recorded vascular plant species presence with the rooted (all sites) and shoot (four sites) presence method. Data of these micro-quadrats were then combined to achieve larger sampling units of 0.01, 0.04 and 0.16m(2) grain size with six different spatial configurations (square, 4:1 rectangle, 16:1 rectangle, three variants of discontiguous randomly placed micro-quadrats). The effect of the spatial configurations on species richness was quantified as relative richness compared to the mean richness of the square of the same surface area. ResultsSquare sampling units had significantly lower species richness than other spatial configurations in all countries. For 4:1 and 16:1 rectangles, the increase of rooted richness was on average about 2% and 8%, respectively. In contrast, the average richness increase for discontiguous configurations was 7%, 17% and 40%. In general, increases were higher with shoot presence than with rooted presence. Overall, the patterns of richness increase were highly consistent across six countries, three grain sizes and two recording methods. ConclusionsOur findings suggest that the shape of sampling units has negligible effects on species richness values when the length-width ratio is up to 4:1, and the effects remain small even for more elongated contiguous configurations. In contrast, results from discontiguous sampling units are not directly comparable with those of contiguous sampling units, and are strongly confounded by spatial extent. This is particularly problematic for rarefaction studies where spatial extent is often not controlled for. We suggest that the concept of effective area is a useful tool to report effects of spatial configuration on richness values, and introduce species-extent relationships (SERs) to describe richness increases of different spatial configurations of sampling units.
Fichier principal
Vignette du fichier
Guler_B_2016_Journal_of_vegetation_science_{08959F7B-E1D3-4DB5-9CB9-8592D490F10D}.pdf (291.54 Ko) Télécharger le fichier
Origine : Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01555265 , version 1 (03-07-2017)

Identifiants

Citer

Behlül Guler, Anke Jentsch, Iva Apostolova, Sandor Bartha, Juliette Bloor, et al.. How plot shape and spatial arrangement affect plant species richness counts: implications for sampling design and rarefaction analyses. Journal of Vegetation Science, 2016, 27 (4), pp.692-703. ⟨10.1111/jvs.12411⟩. ⟨hal-01555265⟩

Collections

INRA INRAE UREP
223 Consultations
741 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More