Discrete-time Quantum Walks in random artificial Gauge Fields
Résumé
Discrete-time quantum walks (DTQWs) in random artificial electric and gravitational fields are studied analytically and numerically. The analytical computations are carried by a new method which allows a direct exact analytical determination of the equations of motion obeyed by the average density operator. It is proven that randomness induces decoherence and that the quantum walks behave asymptotically like classical random walks. Asymptotic diffusion coefficients are computed exactly. The continuous limit is also obtained and discussed.